
Learning Latent Variable and Predictive
Models of Dynamical Systems

Sajid M. Siddiqi

CMU-RI-09-39

October 2009

RoboticsInstitute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Geoffrey J. Gordon, Chair

Andrew W. Moore
Jeff Schneider

Zoubin Ghahramani, University of Cambridge
David Wingate, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2009 Sajid M. Siddiqi

This research was sponsored by NSF (ACI-0121671, 010543-1, 0000164), DARPA (F30602-01-2-0550,
NBCHD030010), CDC (1R01PH00002801), USDA (4400161514, 4400147018, 4400150944), USAF (FA8650-
05-C-7264), PA Department of Health (6003221), and a project with MobileFusion/TTC.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Learning Latent Variable and Predictive Models of Dynamical Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,The Robotics Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

191

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To my wife, Nada.

iv

Acknowledgments

Despite the single author listed on the cover, this dissertation is not the product of one
person alone. I would like to acknowledge many, many people who influenced me, my life
and my work. They have all aided this research in different ways over the years and helped
it come to a successful conclusion. Geoff Gordon, my advisor, has taught me a lot over
the years; how to think methodically and analyze a problem, how to formulate problems
mathematically, and how to choose interesting problems. From the outset, he has helped
me develop the ideas that went into the thesis. Andrew Moore, my first advisor, got me
started in machine learning and data mining and helped make this field fun and accessible
to me, and his guidance and mentoring was crucial for work done early in my Ph.D. Both
Geoff and Andrew are the very best kind of advisor I could have asked for: really smart,
knowledgeable, caring and hands-on. They showed me how be a good researcher while
staying relaxed, calm and happy. Though I wasn’t always able to strike that balance, the
example they set was essential for me to be able to make it through without burning out in
the process.

All the members of the AUTON lab deserve much thanks, especially Artur Dubrawski
and Jeff Schneider, as well as Mike Baysek for being the best system administrator anyone
could ever work with. The SELECT lab, with which I became involved halfway through
my Ph.D., was a very stimulating environment that helped enrich my research and learn-
ing. Thanks to Carlos Guestrin for the many insights and the keen intuition he added in
lab meetings and personal discussions. I also had many fruitful discussions with Zoubin
Ghahramani during his visits to Pittsburgh, who, with pen and paper, would present com-
plex and exciting ideas in the most intuitive and accessible fashion. I would also like to
thank Suzanne Lyons-Muth, Karen Widmaer, Sumitra Gopal and Jean Harpley for being
great administrative coordinators and helping me with a smile whenever needed. For me,
these people made the Robotics Institute the best place to be at Carnegie Mellon.

I would also like to acknowledge my friends, colleagues and collaborators here at
Carnegie Mellon who helped make it such a great environment to work and learn in. A

v

special thanks goes to Byron Boots, who is a collaborator on work presented in Chapters
5 and 6 in this thesis and from whom I have learned a lot about research and science.
Abhishek Sharma, Sanjeev Koppal, Purnamrita Sarkar, Khalid El-Arini, Byron, Mike Stil-
man and David Choi have been my closest friends here over the years and were always
there for me when I needed them. My memories of CMU would be incomplete without
them. Thanks also to Ankur Datta, Obaidullah Khawaja, Julian Ramos, Mahesh Sabhnani,
Miroslav Dudik, Ajit Singh, Stanislav Funiak, Brigham Anderson, Paul Komarek, Jeanie
Komarek, Karen Chen, Anna Goldenberg, Jeremy Kubica, Gaurav Veda, Jonathan Huang,
Sue Ann Hong and Joey Gonzalez who have been have been great friends, labmates and
project partners throughout my time here. Much thanks to Stano for saving me from the
rock I was stranded on during a SELECT lab whitewater rafting trip. I have learned a lot
about life and research by interacting with all these people, as well as others, during my
memorable time here at CMU.

My life in Pittsburgh would have been much more dreary without a larger community
of friends which helped make Pittsburgh feel like home. Nader Shakir, Sarah Aboutalib,
Khalid Harun, Faheem Hussain, Ziad Al-Bawab, Mudassir Alam, Mariam Mahmood,
Rozana Hussin, Ranim Khalifa, Farah Khalifa, Basil Al-Sadhan, Osmaan Akhtar and oth-
ers helped me have a more fulfilling social and spiritual life during my time in Pittsburgh.
Those who were still in Pittsburgh in early 2008 provided a welcoming community of
friends for my wife after she moved here, which was invaluable during the long days and
weeks I was immersed in thesis work during the ensuing months. I am deeply grateful to
them for having been such good friends to us.

Going further back, I would like to thank Gaurav Sukhatme at the University of South-
ern California for letting me work in his robotics lab, and for inducting me into the world of
research in the wonderful environment of his research group at USC. Without his mentor-
ing, encouragement and advice I would not have discovered the joys of scientific research
in robotics and artificial intelligence, and I would not be here today. Srikanth Saripalli, An-
drew Howard, Jim Montgomery, Kale Harbick, Boyoon Jung, David Naffin, Denis Wolf,
Stefan Hrabar and Gabe Sibley were great colleagues during my time in Gaurav’s lab.
Ming-Deh Huang and Leonard Adleman were professors at USC who I had the privilege
of taking classes with, who gave me the confidence to embark on my graduate studies.

My best friends at USC, Srikant Vaithilingam, Sanjeev Koppal (who I followed to
CMU), Meng Lay and Faraz Husain were instrumental in making college a great expe-
rience, and we are all still close. Nathalie Collins, Madhura Sahasrabudhe, Rahul Joshi,
Abrar Ahmed, Damion Desai, Omar Khan, and Jen Soon Ng were other close friends at
CMU who I shared many good times with. Thank you all for helping make college life
sane and happy.

vi

Closefriends from even further back during my childhood in Jeddah, and afterwards
during my brief stays in Montreal and Delhi, also deserve a special mention for all they
have given me over the years, especially Sujit Shankar, Ashraf Khan, Farhath Yar Khan,
Shiraz Mahdi, Sarosh Mohiyuddin and Insha Naqvi. I also had many good memories
and formative experiences with Syed Asim Ali, Imtiyaz R. Khan, Shadab Khan, Shemna
Sanam, Rohini Mukherji, Khadija Ali Omer, Sikandar Siddiqui, Sharad Goel, Samad Hus-
sain, Khizr Rathore, Tarique Siddiqui, Aarij Wasti, Shobhit Mehrotra and Mohit Gupta.
Thank you for everything.

My family . . . Abbu, Ammi, Bhaijan, Bhayya, Apia and Bajia. . . nurtured and cared
for me throughout my life, taught me everything important that I know, helped me study
and do my homework on time, and footed my bills all the way. They were also the most
supportive family throughout my Ph.D. despite the fact that it took me far away from them
all the way to Pittsburgh, for the last 6 years. I am very grateful to them and love them
all very much. I am especially thankful to Abbu and Ammi (who raised 5 children and
made it look easy) for giving me immeasurable amounts of love and attention throughout
my life, setting a formidably high bar for parenthood in the process. I’m also proud to be
only the second Siddiqi in the family to earn a Ph.D., after Abbu. I’m thankful to God
for giving me such wonderful and loving parents, brothers and sisters. Over the last few
years, I have also had the good fortune of becoming an uncle to the sweetest nieces and
nephews one could hope for. Adnan, Farhan, Sarah, Hana, Faraz, Faisal, Faiz, Ahmad and
Sana: you are the greatest kids. I pray that you have the happiest lives.

My extended family, particularly Naana Jaan and Naani Amma, Phuppa and Phuppi,
Chachcha, Chachchi, Ahmad Bhai and his family, and all my aunts and uncles have always
been caring and supportive, and have always prayed for my success in whatever I do. I
wish Naana Jaan and Chachchi were here today. I am forever indebted to my entire family
for their love and support.

I am also fortunate to have such caring in-laws: Mummy, Pappa and Sana, and Hisham
Bhai, Essam Bhai and both their families, have all been extremely loving, supportive and
hospitable in these last few months. These months have been much more pleasant as a
result, and I am grateful to them for including me wholeheartedly into their family.

Finally, Nada. I cannot overstate how much she has transformed my life for the better
in the last few years, first as my friend, then as my best friend, and now as my wife.
She has put her heart and soul into helping me complete this degree in one piece, and
has sacrificed greatly in terms of her time, effort and tolerance for my constant busy-and-
stressed-out status during the last few months. There is absolutely no doubt in my mind
that I would have faltered near the end had she not stepped in and changed everything.
Thank you. I love you very very much.

vii

viii

Contents

1 Introduction 1

2 Hidden Markov Models 5

2.1 Definition . 5

2.2 Filtering and Smoothing . 6

2.3 Path Inference. 9

2.4 Learning Hidden Markov Models. 10

2.4.1 Expectation Maximization. 10

2.4.2 Viterbi Training . 12

2.5 Related Work . 13

3 Linear Dynamical Systems 15

3.1 Definition . 15

3.2 Inference . 16

3.2.1 The Forward Pass (Kalman Filter). 16

3.2.2 The Backward Pass (RTS Equations). 17

3.3 Learning Linear Dynamical Systems. 18

3.3.1 Expectation Maximization. 19

3.3.2 Subspace Identification. 20

3.4 Stability . 26

3.5 Related Work . 27

ix

4 Fast State Discovery and Learning in Hidden Markov Models 29

4.1 Introduction. 30

4.2 Related Work. 32

4.3 Simultaneous Temporal and Contextual Splits. 34

4.3.1 The Algorithm . 35

4.3.2 Generating Candidates. 36

4.3.3 Efficient Candidate Scoring and Selection. 39

4.4 Experiments. 40

4.4.1 Algorithms and Data Sets. 41

4.4.2 Learning HMMs of Predetermined Size. 43

4.4.3 Model Selection Accuracy with BIC. 44

4.4.4 Discovering the Correct Topology. 45

4.4.5 Australian Sign-Language Recognition. 45

4.5 Application: Event Detection in Unstructured Audio. 46

4.5.1 Data and Preprocessing. 47

4.5.2 Results . 48

4.6 Discussion. 49

5 Learning Stable Linear Dynamical Systems 59

5.1 Introduction. 60

5.2 Related Work . 61

5.3 The Algorithm . 63

5.3.1 Formulating the Objective. 63

5.3.2 Convexity . 64

5.3.3 Generating Constraints. 66

5.3.4 Computing the Solution. 67

5.3.5 Refinement. 67

5.4 Experiments. 68

5.4.1 Stable Dynamic Textures. 68

x

5.4.2 Prediction Accuracy on Robot Sensor Data. 72

5.4.3 Stable Baseline Models for Biosurveillance. 74

5.4.4 Modeling Sunspot Numbers. 75

5.5 Discussion. 76

6 Reduced-Rank Hidden Markov Models 77

6.1 Introduction . 78

6.1.1 Definitions . 81

6.1.2 Expressivity of RR-HMMs. 82

6.2 Learning Reduced-Rank HMMs. 83

6.2.1 The Algorithm . 85

6.2.2 Inference in the Observable Representation. 88

6.2.3 Theoretical Guarantees. 89

6.2.4 Learning with Observation Sequences as Features. 90

6.2.5 Learning with Indicative and Characteristic Features. 92

6.2.6 Kernel Density Estimation for Continuous Observations. 92

6.3 Experimental Results. 94

6.3.1 Learning Synthetic RR-HMMs. 95

6.3.2 Competitive Inhibition and Smooth State Evolution in Video. . . 96

6.3.3 Filtering, Prediction, and Simulation with Robot Vision Data. . . 98

6.4 Related Work . 99

6.4.1 Predictive State Representations. 99

6.4.2 Hybrid Models, Mixture Models and other recent approaches. . . 101

6.5 Discussion. 102

7 Future Work and Discussion 105

7.1 Future Work. 105

7.1.1 Scaling STACS for learning very large state-space HMMs. . . . 105

7.1.2 Constraint generation for learning stable PSRs. 107

xi

7.1.3 Efficient planning in empirically estimated RR-POMDPs. 107

7.1.4 Learning RR-HMMs over arbitrary observation features. 108

7.1.5 Hilbert space embeddings of RR-HMMs. 108

7.1.6 Sample complexity bounds for spectral learning of PSRs. 109

7.1.7 Spectral learning of exponential family RR-HMMs. 109

7.2 Why This Thesis Matters. 109

A RR-HMM Details 111

A.1 Proofs . 111

A.1.1 Preliminaries . 112

A.1.2 Matrix Perturbation Theory. 120

A.1.3 Supporting Lemmas. 123

A.1.4 Proof of Theorem 2. 139

A.1.5 Proof of Theorem 2 for Continuous Observations. 150

A.2 Learning with Ambiguous Observations: Example. 151

A.3 Synthetic Example RR-HMM Parameters. 152

A.4 Consistency Result for Learning with Indicative and Characteristic Features153

A.5 Consistency Result for Learning PSRs. 156

Bibliography 159

xii

List of Figures

2.1 The graphical model representation of an HMM.. 7

3.1 A. Sunspot data, sampled monthly for200 years. Each curve is a month,
thex-axis is over years. B. First two principal components of a1-observation
Hankel matrix. C. First two principal components of a12-observation
Hankel matrix, which better reflect temporal patterns in the data.. 21

4.1 A. A time series from a4-state HMM. Observations from the two states
down-middle-upand up-middle-downoverlap and are indistinguishable
without temporal information. B. The HMM topology learned by ML-
SSS and Li-Biswas on the data in A. C. The correct HMM topology,
successfully learned by the STACS algorithm.. 31

4.2 An illustration of the overly restrictive splits in ML-SSS. A. Original un-
split stateh∗. B. A contextual splitof h∗ in the ML-SSS algorithm. States
h0 andh1 must have thesametransition structures and different observa-
tion models. C. Atemporal split. Stateh0 has the incoming transition
model ofh∗ andh1 has its outgoing ones.. 33

4.3 A. Running time vs.number of final states on the ROBOT data set. B. Final
scaled log-likelihood (nats/datapoint) vs. number of states for learning
fixed-size models on the Robot data. C. Log-Likelihood vs. running time
for learning a40-state model on the ROBOT data. D. BIC score vs. running
time on the MOCAP data when allowed to stop splitting autonomously.
Results are typical of those obtained on all data sets, shown mostly on the
Robot dataset because it allowed the largest(N = 40) Li-Biswas HMMs. 53

4.4 Learning40-state HMMs. Top: scaled test-set loglikelihoods of learned
models. Bottom: Factor of running time speedup w.r.t.slowest algorithm
for learning. 54

xiii

4.5 Learning state space dimensions and parameters. Top: scaled BIC scores
of learned models. Bottom: Final HMM state space size.. 55

4.6 A. Fragment of10-state univariate synthetic data sequence used for model
selection testing. The histogram shows only7 distinct peaks, indicating
that some of the observation densities overlap completely. B. Flock5DT
instrumented glove used to collect Australian Sign Language data [1] used
in our classification experiments.. 56

4.7 (A) A mobile tactical device and (B) a fixed device on which our algo-
rithms were deployed. 56

4.8 (A) Training timesin log(minutes). V-STACS and STACS are at least an
order of magnitude faster than 5-restart EM. (B) Classification accuracies.
VSTACS is better than EM in nearly all cases.. 57

5.1 (A): Conceptual depiction of the space ofn×nmatrices. The region of sta-
bility (Sλ) is non-convex while the smaller region of matrices withσ1 ≤ 1
(Sσ) is convex. The elliptical contours indicate level sets of the quadratic
objective function of the QP.Â is the unconstrained least-squares solu-
tion to this objective.ALB-1 is the solution found by LB-1 [2]. One it-
eration of constraint generation yields the constraint indicated by the line
labeled ‘generated constraint’, and (in this case) leads to a stable solution
A∗. The final step of our algorithm improves on this solution by inter-
polatingA∗ with the previous solution (in this case,̂A) to obtainA∗

final.
(B): The actual stable and unstable regions for the space of2× 2 matrices
Eα,β = [0.3 α ; β 0.3], with α, β ∈ [−10, 10]. Constraint generation is
able to learn a nearly optimal model from a noisy state sequence of length
7 simulated fromE0,10, with better state reconstruction error than either
LB-1 or LB-2. 65

xiv

5.2 Dynamic textures. A. Samples from the originalsteam sequence and the
fountain sequence. B. State evolution of synthesized sequences over
1000 frames (steam top, fountain bottom). The least squares solu-
tions display instability as time progresses. The solutions obtained using
LB-1 remain stable for the full1000 frame image sequence. The constraint
generation solutions, however, yield state sequences that are stable over
the full 1000 frame image sequence without significant damping. C. Sam-
ples drawn from a least squares synthesized sequences (top), and samples
drawn from a constraint generation synthesized sequence (bottom). The
constraint generation synthesizedsteam sequence is qualitatively better
looking than thesteam sequence generated by LB-1, although there is
little qualitative difference between the two synthesizedfountain se-
quences.. 69

5.3 Bar graphs illustrating decreases in objective function value relative to
the least squares solution (A,B) and the running times (C,D) for different
stable LDS learning algorithms on thefountain(A,C) and steam(B,D)
textures respectively, based on the corresponding columns of Table 5.1.. 71

5.4 Prediction accuracy on Robot Sensory Data (from Boots (2009) [3]).A.
The mobile robot with camera and laser sensors. B. The environment
and robot path. C. An image from the robot camera. D. A depiction of
laser range scan data (green dots on environment surfaces). E. Predictive
log-likelihoods from: the unstable model (Unstable), constraint generation
(CG), and the two other LDS stabilizing algorithms, LB-1 and LB-2. Bars
at every 20 timesteps denote variance in the results. CG provides the best
stable short term predictions, nearly mirroring the unstable model, while
all three stabilized models do better than the unstable model in the long term.73

5.5 (A): 60 days of data for22 drug categories aggregated over all zipcodes in
the city. (B):60 days of data for a single drug category (cough/cold) for
all 29 zipcodes in the city. (C): Sunspot numbers for200 years separately
for each of the12 months. The training data (top), simulated output from
constraint generation, output from the unstable least squares model, and
output from the over-damped LB-1 model (bottom).. 75

xv

6.1 (A) Observations from a dynamical system with 4 discrete states and 3
discrete observations, two of whose states emit the observation ‘c’ and
can only be distinguished by the underlying dynamics. (B) 3-state HMMs
learned using EM with multiple restarts cannot represent this model, as
evinced by simulations from this model. (C) A rank-3 RR-HMM esti-
mated using a single run of the learning algorithm described in this chap-
ter represents this 4-state model accurately (as seen from simulations), as
does (D) a 4-state HMM learned using EM, though the latter needs mul-
tiple restarts to discover the overlapping states and avoid local minima.

. 79

6.2 (A) The graphical model representation of an RR-HMM.lt denotes the
k-dimensional state vector,ht them-dimensional discrete state, andxt the
discrete observation. The distributions overht andlt+1 are deterministic
functions oflt. (B) An illustration of different RR-HMM parameters and
the spaces and random variables they act on. (C) Projection of sets of
predictive distributions of a rank3 RR-HMM with 10 states, and a3-state
full-rank HMM with similar parameters.. 81

6.3 Learning discrete RR-HMMs. The three figures depict the actual eigen-
values of three different RR-HMM transition matrices, and the eigenval-
ues (95% error bars) of the sum of RR-HMM observable operators es-
timated with10, 000 and100, 000 training observations. (A) A 3-state,
3-observation, rank 2 RR-HMM. (B) A full-rank, 3-state, 2-observation
HMM. (C) A 4-state, 2-observation, rank 3 RR-HMM.. 95

6.4 The clock video texture simulated by a HMM, a stable LDS, and a RR-
HMM. (A) The clock modeled by a10-state HMM. The manifold consists
of the top3 principal components of predicted observations during simu-
lation. The generated frames are coherent but motion in the video is jerky.
(B) The clock modeled by a10-dimensional LDS. The manifold indicates
the trajectory of the model in state space during simulation. Motion in the
video is smooth but frames degenerate to superpositions. (C) The clock
modeled by a rank10 RR-HMM. The manifold consists of the trajectory
of the model in the low dimensional subspace of the state space during
simulation. Both the motion and the frames are correct.. 97

xvi

6.5 (A) The mobile robotic platform used in experiments. (B) Sample images
from the robot’s camera. The lower figure depicts the hallway environment
with a central obstacle (black) and the path that the robot took through
the environment while collecting data (the red counter-clockwise ellipse)
(C) Squared loss prediction error for different models after filtering over
initial part of data. The RR-HMM performs more accurate predictions
consistently for 30 timesteps.. 98

xvii

xviii

List of Tables

4.1 Test-set log-likelihoods (scaled by dataset size) and training times of HMMs
learned using STACS,V-STACS, ML-SSS and regular Baum-Welch with
5 random restarts. The best score and fastest time in each row are high-
lighted. Li-Biswas had similar results as ML-SSS, and slower running
times, for thosem where it completed successfully.. 42

4.2 BIC scores scaled by dataset size, and(number of states), of final mod-
els chosen by STACS, V-STACS, Li-Biswas and ML-SSS. STACS and V-
STACS consistently find larger models with better BIC scores, indicating
more effective split design.. 44

4.3 Australian sign-language word recognition accuracy on a 95-word classi-
fication task, andaverage HMM sizes, on AUSL data.. 46

4.4 Data Specifications. The last row shows the total number of samples, over-
all average number of timesteps per sample, and total duration in minutes
and seconds.. 48

4.5 Average Confusion Matrix for EM (top) and V-STACS (bottom). Actual
(rows) vs Predicted (columns). Each entry is a percentage of test data
averaged over the cross-validation runs, and each row sums to 100. For
each entry, the better entry of the two tables is inbold. Ties are initalics. 50

5.1 Quantitative results on the dynamic textures data for different numbers of
statesn. CG is our algorithm, LB-1and LB-2 are competing algorithms,
and LB-1∗ is a simulation of LB-1 using our algorithm by generating con-
straints until we reachSσ, since LB-1 failed forn > 10 due to memory
limits. ex is percent difference in squared reconstruction error. Constraint
generation, in all cases, has lower error and faster runtime.. 70

xix

xx

Abstract

A variety of learning problems in robotics, computer vision and other ar-
eas of artificial intelligence can be construed as problems of learning statistical
models for dynamical systems from sequential observations. Good dynamical
system models allow us to represent and predict observations in these systems,
which in turn enables applications such as classification, planning, control,
simulation, anomaly detection and forecasting. One class of dynamical sys-
tem models assumes the existence of an underlying hidden random variable
that evolves over time and emits the observations we see. Past observations
are summarized into the belief distribution over this random variable, which
represents the state of the system. This assumption leads to ‘latent variable
models’ which are used heavily in practice. However, learning algorithms for
these models still face a variety of issues such as model selection, local op-
tima and instability. The representational ability of these models also differs
significantly based on whether the underlying latent variable is assumed to
be discrete as in Hidden Markov Models (HMMs), or real-valued as in Lin-
ear Dynamical Systems (LDSs). Another recently introduced class of models
represents state as a set of predictions about future observations rather than
as a latent variable summarizing the past. These ‘predictive models’, such as
Predictive State Representations (PSRs), are provably more powerful than la-
tent variable models and hold the promise of allowing more accurate, efficient
learning algorithms since no hidden quantities are involved. However, this
promise has not been realized.

In this thesis we propose novel learning algorithms that address the issues
of model selection, local minima and instability in learning latent variable
models. We show that certain ’predictive’ latent variable model learning meth-
ods bridge the gap between latent variable and predictive models. We also
propose a novel latent variable model, the Reduced-Rank HMM (RR-HMM),
that combines desirable properties of discrete and real-valued latent-variable
models. We show that reparameterizing the class of RR-HMMs yields a sub-
set of PSRs, and propose an asymptotically unbiased predictive learning algo-
rithm for RR-HMMs and PSRs along with finite-sample error bounds for the
RR-HMM case. In terms of efficiency and accuracy, our methods outperform
alternatives on dynamic texture videos, mobile robot visual sensing data, and
other domains.

xxii

Chapter 1

Introduction

Modeling of dynamical systems is an important aspect of robotics, artificial intelligence

and statistical machine learning. Such modeling is typically based onobservationsthat

arise from the dynamical system over time. A distinguishing characteristic of dynamical

systems is that their observations exhibittemporal correlations, modeling of which is the

main challenge of dynamical systems analysis. Accurate models of dynamical systems

allow us to perform a variety of useful tasks, such asprediction, simulation, recognition,

classification, anomaly detectionandcontrol. In this thesis we focus onuncontrolleddy-

namical systems withmultivariate real-valued observations. This thesis contributes (1)

novel learning algorithms for existing dynamical system models that overcome significant

limitations of previous methods, (2) a deeper understanding of some important distinctions

between different dynamical system models based on differences in their underlying as-

sumptions and in their learning algorithms, and (3) a novel model that combines desirable

properties of several existing models, along with inference and learning algorithms which

have theoretical performance guarantees.

Two major approaches for modeling dynamical systems in machine learning areLatent

Variable Models (LVMs)andpredictive models, which have different benefits and draw-

backs. An LVM for dynamical systems assumes its observations are noisy emissions from

an underlyinglatent variablethat evolves over time and represents thestateof the system.

1

In other words, the latent state is a sufficient statistic for allpastobservations. LVMs prob-

abilistically model both the latent variable’s evolution and the relationship between latents

and observables. Typical parameter learning algorithms for LVMs (such as the Expecta-

tion Maximization (EM) algorithm and related methods) are prone tolocal optimaof their

objective functions, and so cannot provide consistent parameter estimates with reasonable

amounts of computation especially for large models, since multiple restarts are required to

search the space of local optima. In contrast, predictive models (such as Predictive State

Representations (PSRs)) and their learning algorithms define the state of a dynamical sys-

tem as a set ofpredictionsof expected values of statistics of the future, calledtests. Since

there are no latent or “hidden” quantities involved, learning algorithms for predictive mod-

els (which typically rely on matrix factorization rather than on EM) can yieldconsistent

parameter estimates, though guaranteeing well-formed parameters with finite samples is

often a challenge. Research from control theory as well as recent work in statistical learn-

ing theory (including parts of this thesis) have blurred the distinction between LVMs and

predictive models by showing that LVMs can be learned in a globally optimal fashion with

predictive algorithms, allowing us to interpret their latent variables as tests.

The two best-known examples of LVMs for continuous-observation dynamical systems

areHidden Markov Models (HMMs)(Chapter2) andLinear Dynamical Systems (LDSs)

(Chapter3). Other LVMs for dynamical systems are often based on one or both of these

two models. We describe important properties of HMMs and LDSs in more detail below.

HMMs assume adiscretelatent variable that can take on finitely many values, each

characterized by a unique probability distribution over observations. These assumptions

allow HMMs to model a large variety of predictive distributions during forward simulation

(including predictive distributions which are not log-concave), which is an advantage for

modeling a variety of real-world dynamical systems. We will use the termcompetitive

inhibition to denote the ability of a model (such as the HMM) to represent non-log-concave

predictive distributions. A model that performs competitive inhibition can probability

mass on distinct observations while disallowing mixtures of those observations. However,

the discrete nature of the HMM’s latent state makes it difficult to model smoothly evolving

dynamical systems, which are also common in practice. Another difficulty with HMMs

2

is the problem ofmodel selection, or determining the correct number of states and the

structure (e.g. sparsity) of the transition and observation functions.

On the other hand, LDSs assume acontinuouslatent variable that evolves linearly

with Gaussian noise, and a Gaussian observation distribution whose mean is linear in

the latent variable. These assumptions make LDSs adept at modeling smoothly evolving

dynamical systems but unable to perform competitive inhibition. The inability to handle

competitive inhibition stems from the fact that the predictive distribution is always log-

concave; therefore any convex combination of likely observations will also be likely. Also

unlike HMMs, matrix-factorization-based approaches to learning LDSs make it easy to

perform model selection. Another distinction from HMMs is that conventional learning

algorithms for the LDS do not guaranteestableparameters for modeling its dynamics.

This can be either a benefit or a drawback, since the system to be modeled may be either

unstable or stable. However, all of the systems that we consider modeling in this thesis are

stable, so we consider it a drawback when a learning algorithm returns an unstable set of

parameters.

In this thesis we advance the theory and practice of learning dynamical system models

from data in several ways. We first address the tendency of HMM learning algorithms to

get stuck in local optima, and the need to pre-define the number of states: we developSi-

multaneous Temporal and Contextual Splitting(STACS), a novel EM-based algorithm for

performing both model selection and parameter learning efficiently in Gaussian HMMs

while avoiding local minima (Chapter4). Results show improved learning performance

on a wide variety of real-world domains. We next address a deficiency in conventional

LDS learning algorithms: we propose a matrix-factorization-based learning algorithm for

LDSs that usesconstrained optimizationto guarantee stable parameters and yields su-

perior results in simulation and prediction of a variety of real-world dynamical systems

(Chapter5). Finally, we address the more ambitious goal of bridging the gap between

models that can perform competitive inhibition and models that can represent smoothly

evolving systems: we propose theReduced-Rank Hidden Markov Model (RR-HMM), a

model that can do both the above (Chapter6). We investigate its relationship to existing

models, and propose a predictive learning algorithm along with theoretical performance

3

guarantees. We demonstrate results on a variety of high-dimensional real-world data sets,

including vision sensory output from a mobile robot.

4

Chapter 2

Hidden Markov Models

Hidden Markov Models (HMMs) are LVMs where the underlying hidden variable can

take on one of finitely manydiscretevalues. Introduced in the late 1960s, HMMs have

been used most extensively in speech recognition [4,5] and bioinformatics [6] but also in

diverse application areas such as computer vision and information extraction [7,8]. For

an excellent tutorial on HMMs, see Rabiner [4]. In this chapter we define HMMs and

describe their standard inference and learning algorithms.

2.1 Definition

Letht ∈ 1, . . . ,m denote the discrete hidden states of an HMM at timet, andxt ∈ 1, . . . , n

denote the observations. These can be either discrete or continuous—we will specify

our assumptions explicitly for different instances. LetT ∈ Rm×m be the state transition

probability matrix with its[i, j]th entryTij having valuePr[ht+1 = i | ht = j]. O is the

column-stochastic observation model such thatO(i, j) = Pr[xt = i | ht = j]. For discrete

observations,O is a matrix of observation probabilities of sizen ×m, andO(i, j) = Oij

denotes the[i, j]th entry ofO. For continuous observations,O(x, j) denotes the probability

of observationx under a Gaussian distribution specific to statej, i.e.O(x, j) = N (x |
µj,Σj). ~π ∈ Rm is the initial state distribution with~πi = Pr[h1 = i]. We useλ to denote

5

the entire set of HMM parameters{T,O, π}. Figure2.1 illustrates the graphical model

corresponding to an HMM.

Let ~ht ∈ Rm denote the system’sbelief state, i.e. a distribution over hidden states at

time t. If we useei to denote theith column of the identity matrix, then~ht is equivalent to

the conditional expectation ofeht, with the conditioning variables clear from context. We

use the termpathto denote a sequence of hidden statesH = h1, h2, . . . , hτ corresponding

to a sequence of observationsX = x1, x2, . . . , xτ from an HMM.

Computing the probability of a sequence of observations with an HMM is very simple.

Note thatPr[x1] can be expressed as a chain product of HMM parameters. LetOx,· denote

the row ofO containing probabilities for observationx under each possible state. Now,

define the parametersAx as

Ax = T diag(Ox,·) (2.1)

Then,

Pr[x1] =
∑

g

Pr[x1 | h1 = g] Pr[h1 = g] = ~1T
m diag(Ox1,·)~π

Similarly, Pr[x1x2 . . . xτ] can be expressed as∑
gτ ,...,g1

Pr[xτ | hτ = gτ] Pr[hτ = gτ | hτ−1 = gτ−1] · · ·Pr[x1 | h1 = g1] Pr[h1 = g1]

= ~1T
mT diag(Oxτ ,·)T diag(Oxτ−1,·) · · ·T diag(Ox1,·)~π

= ~1T
mAxτAxτ−1Axτ−2 . . . Ax1~π (2.2)

We now describe standard algorithms for filtering (forward inference), smoothing (back-

ward inference), path inference, learning and model selection in HMMs.

2.2 Filtering and Smoothing

Filtering is the process of maintaining a belief distribution while incrementally condition-

ing on observations over time in the forward direction, from past to present. Define the

6

x t xt+1xt-1

ht ht+1ht-1

Figure2.1: The graphical model representation of an HMM.

forward variableα(t, i) as

α(t, i) = Pr[x1, . . . , xt, ht = i | λ]

Then, the filtering belief distribution can be written using Bayes rule as the vectorα(t, ·) =

[α(t, 1) . . . α(t,m)]T where theith element is:

α(t, i) ≡ Pr[ht = i | x1, . . . , xt, λ] =
α(t, i)∑
j α(t, j)

The values ofα(t, i) for all t, i can be computed inductively according to the following

equation [4]:

α(t, i) = O(i, xt)
∑

j

α(t− 1, j)Tij

The corresponding vector update equation is:

α(t, ·) = diag(O(:, xt))Tα(t− 1, ·)

Given the filtering belief probabilityα(t, i) of being in statei at time t , the corre-

sponding probability at timet+ 1 can be obtained directly in the following two steps:

7

Pr[ht+1 = i | x1, . . . , xt]

=
∑

j

Pr[ht+1 = i | ht = j] Pr[ht = j | x1, . . . , xt] (prediction step)

=
∑

j

Tijα(t, j)

α(t+ 1, i) = Pr[ht+1 = i | x1, . . . , xt, xt+1]

=
Pr[xt+1 | ht+1 = i] Pr[ht+1 = i | x1, . . . , xt]∑
j Pr[xt+1 | ht+1 = j] Pr[ht+1 = j | x1, . . . , xt]

(update step)

=
O(i, xt+1) Pr[ht+1 = i | x1, . . . , xt]∑
j O(j, xt+1) Pr[ht+1 = j | x1, . . . , xt]

The forward variables also allow easy computation of the observation sequence prob-

ability:

Pr[X | λ] =
∑

j

Pr[x1, . . . , xτ , hτ = j | λ] =
∑

j

α(τ, j)

In contrast to filtering,smoothingin HMMs is the process of maintaining a belief distrib-

ution over the present based on observations in the future. Define thebackward variable

β(t, i) as

β(t, i) = Pr[ht = i | xt+1, . . . , xτ]

The value ofβ(t, i) can also be updated inductively as follows.

β(t, i) =
∑

j

O(j, xt+1)Tjiβ(t+ 1, j)

The corresponding vector update equation is:

β(t, ·) = TT diag(O(:, xt))β(t+ 1, ·)

The process of computing the forward and backward variables from an observation se-

quence using filtering and smoothing as described above is known as theforward-backward

algorithm. Its running time isO(τm2). Together, the forward and backward variables

8

allow us to compute theposterior stepwise beliefsandposterior stepwise transition prob-

abilities for an entire observation sequence, which are denoted byγ(t, i) and ξ(t, i, j)

respectively:

γ(t, i) ≡ Pr[ht = i | x1, . . . , xτ] =
α(t, i)β(t, i)

Pr[X | λ]

ξ(t, i, j) ≡ Pr[ht = i, ht+1 = j | x1, . . . , xτ] =
α(t, i)Tjiβ(t+ 1, j)O(j, xt+1)

Pr[X | λ]

As before, the denominators can be computed quickly by summing over the numerator.

These variables will be useful when describing parameter learning algorithms for HMMs.

2.3 Path Inference

Path inference is the task of computing a path corresponding to a given observation se-

quence for a given HMM, such that the joint likelihood of path and observation sequence

is maximized. Letλ denote the HMM andX denote the sequence of observations. Then,

path inference computesH∗ such that

H∗ = arg max
H

Pr[X,H | λ]

For an observation sequence of lengthτ , theViterbi algorithm [9] computes an optimal

path in running timeO(τm2) using dynamic programming.

Defineδ(t, i) as

δ(t, i) = max
h1,··· ,ht−1

Pr[h1h2 · · ·ht = i, x1x2 · · ·xt | λ]

Though computingδ(t, i) for all t, i naively would have running time that is exponential

in τ , it can be computed inductively in a more efficient fashion. The inductive formula for

δ(t, j) used in the Viterbi algorithm is

δ(t, j) =
(
max

i
δ(t, i)Tij

)
O(j, xt+1)

Since there is a maximization overm terms carried out for each state per timestep, and

there arem×τ δ(t, i) values to be calculated, the total running time of the Viterbi algorithm

isO(τm2).

9

2.4 Learning Hidden Markov Models

A large body of research exists on algorithms for learning HMM parameters from data. We

focus on two of the most common techniques here, namelyBaum-WelchandViterbi Train-

ing. These are both iterative methods analogous to the populark-means algorithm [10,11]

for clustering independent and identically distributed (IID) data, in the sense that they

monotonically minimize a distortion function of the data with respect to a fixed number of

“centers” (here,states) using successive iterations of computing distances to these centers

and updating these centers to better positions. Since HMMs model sequential data, there

is an additional dimension to these learning algorithms, namely the order in which data-

points tend to appear in the training sequence, which is modeled by the HMM’s transition

matrix.

The more recently developedspectral learning algorithmfor HMMs [12, 13] relies on

a Singular Value Decomposition (SVD) of a correlation matrix of past and future obser-

vations to derive anobservable representationof an HMM. We describe this algorithm in

detail in Chapter6.

2.4.1 Expectation Maximization

Given one or several sequences of observations and a desired number of statesm, we can fit

an HMM to the data using an instance of EM [14] calledBaum-Welch[15] which was dis-

covered before the general EM algorithm. Baum-Welch alternates between steps of com-

puting a set of expected sufficient statistics from the observed data (theE-step) and updat-

ing the parameters using estimates computed from these statistics (theM-step). The main

advantage of Baum-Welch is that these closed-form iterations are guaranteed to monoton-

ically converge to an optimum of the observed data log-likelihoodllX(λ) = log Pr[X | λ].

The disadvantage is that it is only guaranteed to reach alocal optimum, and there are no

guarantees about reaching the global optimum. In practice, this issue is often addressed by

running EM several times starting from different random parameter initializations. How-

ever, as the number of states increases, the algorithm is increasingly prone to local optima

10

to an extent that is difficult to overcome by multiple restarts. The algorithm can be sum-

marized as follows for a given training sequenceX = 〈x1, x2, ..., xτ 〉, for both discrete

and continuous observations (assuming multinomial and Gaussian observation models re-

spectively):

1. Initialize λ̂ = 〈π̂, T̂ , Ô〉 randomly to valid values (i.e. preserving non-negativity and

stochasticity where needed).

2. Repeat while log-likelihoodll(X | λ̂) increases by more than some thresholdε:

(a) E-step: Use forward-backward algorithm on̂λ andX to computeα(t, i),β(t, i)

for all t, i and from these computeγ(t, i) andξ(t, i, j) for all t, i, j.

(b) M-step: Compute updated parameter estimatesλ̃ = 〈π̃, T̃ , Õ〉 as follows:

π̃i = γ(1, i) ∀i

T̃ (i, j) =

∑τ−1
t ξ(t, j, i)∑τ−1
t γ(t, j)

∀i, j

Multinomial observation model:

Õ(i, x) =

∑
t:xt=x γ(t, i)∑τ

t γ(t, i)

Gaussian observation model:

µ̃j =

∑τ
t=1 γ(t, j) · xt∑τ

t=1 γ(t, j)
∀j

Σ̃j =

∑τ
t=1 γ(t, j) · (xt − µj)(xt − µj)

T∑τ
t=1 γ(t, j)

∀j

(c) λ̂← λ̃

3. Return final parameter estimatesλ̂

11

2.4.2 Viterbi Training

Viterbi Training is the hard-updates analogue of Baum-Welch, in the sense that the E-step

approximates the posterior stepwise belief and transition probability distributionsγ and

ξ with delta functions at a particular state and transition at every timestep. The particu-

lar state and transition chosen at each timestep are the state and transition in theViterbi

pathat that time. The M-step therefore sets transition and observation probabilities based

on counts computed from the Viterbi path. To update the priorπ, if training is being per-

formed using several observation sequences the prior is based on the distribution ofh∗1 over

these sequences. For a single training sequence, it is best to set the prior to be uniform

rather than setting it to be a delta function ath∗1, though intermediate choices are also pos-

sible (e.g.Laplace Smoothing, which allows biased priors while ensuring no probability is

set to zero). The steps of Viterbi Training can be summarized as follows:

1. Initialize λ̂ = 〈π̂, T̂ , Ô〉 randomly to valid values (i.e. preserving non-negativity and

stochasticity where needed).

2. Repeat while the Viterbi path keeps changing:

(a) E-step: Compute the Viterbi pathH∗ = 〈h∗1, h∗2, . . . , h∗τ 〉

(b) M-step: Compute updated parameter estimatesλ̃ = 〈π̃, T̃ , Õ〉 as follows:

π̃i =
1

τ
∀i

T̃ (i, j) =

∑
t:h∗t =j∧h∗t+1=i 1∑

t:h∗t =j 1
∀i, j

12

Multinomial observation model:

Õ(i, x) =

∑
t:h∗t =i∧xt=x 1∑

t:h∗t =i 1

Gaussianobservation model:

µ̃j =

∑
t:h∗t =j xt∑
t:h∗t =j 1

∀j

Σ̃j =

∑
t:h∗t =j(xt − µj)(xt − µj)

T∑
t:h∗t =j 1

∀j

(c) λ̂← λ̃

3. Returnfinal parameter estimateŝλ

The asymptotic running time of both Baum-Welch and Viterbi Training isO(τm2)

per iteration. However, Viterbi Training is faster by a constant factor. Viterbi Training

converges to a local maximum of the complete data likelihoodPr[X,H | λ], which does

not necessarily correspond to a local maximum of the observed data likelihoodPr[X | λ]

as is usually desired. In practice, Viterbi Training is often used to initialize the slower

Baum-Welch algorithm which does converge to a local maximum ofPr[X | λ].

2.5 Related Work

Recently, HMMs and their algorithms have been re-examined in light of their connec-

tions to Bayesian Networks, such as in [16]. Many variations on the basic HMM model

have also been proposed, such as coupled HMMs [7] for modeling multiple interacting

processes, Input-Output HMMs [17] which incorporate inputs into the model, hierarchical

HMMs [18] for modeling hierarchically structured state spaces, and factorial HMMs [19]

that model the state space in a distributed fashion. Another notable example of a special-

ized sub-class of HMMs tailored for a particular task is the constrained HMM [20] which

was developed originally in the context of speech recognition. Nonparametric methods

13

such as Hierarchical Dirichlet Processes (HDPs) [21] have been used to define sampling-

based versions of HMMs with “infinitely” many states [21,22] which integrate out the

hidden state parameter. This class of models has since been improved upon in several

ways (e.g. [23]to bring it closer to a practical model, though it remains challenging to

tractably perform learning or inference in these models on large multivariate data.

14

Chapter 3

Linear Dynamical Systems

In the case where the state of an LVM ismultivariate real-valuedand the noise terms are

Gaussian, the resulting model is called alinear dynamical system(LDS), also known as a

Kalman Filter [24] or a state-space model [25]. LDSs are an important tool for modeling

time series in engineering, controls and economics as well as the physical and social sci-

ences. In this section we define LDSs and describe their inference and learning algorithms

as well as review the property ofstability as it relates to the LDS transition model, which

will be relevant later in Chapter 6. More details on LDSs and algorithms for inference and

learning in LDSs can be found in several standard references [26,27,28,29].

3.1 Definition

Linear dynamical systems can be described by the following two equations:

xt+1 = Axt + wt wt ∼ N (0, Q) (3.1a)

yt = Cxt + vt vt ∼ N (0, R) (3.1b)

Time is indexed by the discrete indext. Herext denotes thehiddenstates inRn, yt the

observations inRm, andwt andvt are Gaussian noise variables. In this thesis, we will

assumewt andvt are zero-mean, though this may not hold in general. Assume the initial

15

statex(0) = x0. The parameters of the system are the dynamics matrixA ∈ Rn×n, the

observation modelC ∈ Rm×n, and the noise covariance matricesQ andR denoted by the

following equation:

E

{[
wt

vt

] [
wT

s vT
s

]}
=

[
Q 0

0 R

]
δts (3.2)

In this thesis we are concerned withuncontrolledlinear dynamical systems, though, as

in previous work, control inputs can easily be incorporated into the model. Also note

that in continuous-timedynamical systems, which we also exclude from consideration,

the derivatives are specified as functions of the current state. They can be approximately

converted to discrete-time systems via discretization.

3.2 Inference

In this section we describe the forwards and backwards inference algorithms for LDSs.

More details can be found in several sources [26,27,29].

The distribution over state at timet, Pr[Xt | y1:T], can be exactly computed in two

parts: a forward recursion which is dependent on the initial statex0 and the observations

y1:t known as theKalman filter, and a backward recursion which uses the observations

from yT to yt+1 known as theRauch-Tung-Striebel(RTS) equations. The combined for-

ward and backward recursions are together called theKalman smoother. Finally, it is worth

noting that the standard LDS filtering and smoothing inference algorithms [24,30] are in-

stantiations of the junction tree algorithm for Bayesian Networks on a dynamic Bayesian

network analogous to the one in Figure2.1(see, for example, [31]).

3.2.1 The Forward Pass (Kalman Filter)

Let the mean and covariance of the belief state estimatePr[Xt | y1:t] at timet be denoted

by x̂t andP̂t respectively. The estimateŝxt andP̂t can be predicted from the previous time

step, the exogenous input, and the previous observation. Letx̂t1|t2 denote an estimate of

16

variablex at timet1 given datay1, . . . , yt2. We then have the following recursive equations:

xt|t−1 = Axt−1|t−1 (3.3a)

Pt|t−1 = APt−1|t−1A
T +Q (3.3b)

Equation (3.3)(a) can be thought of as applying the dynamics matrixA to the mean to

form an initial prediction of̂xt. Similarly, Equation (3.3)(b) can be interpreted as using

the dynamics matrixA and error covarianceQ to form an initial estimate of the belief

covarianceP̂t. The estimates are then adjusted:

xt|t = xt|t−1 +Ktet (3.3c)

Pt|t = Pt|t−1 −KtCPt|t−1 (3.3d)

where the error in prediction at the previous time step (the innovation)et and the Kalman

gain matrixKt are computed as follows:

et = yt − (Cx̂t|t−1) (3.3e)

Kt = Pt|t−1C
T(CP̂t|t−1C

T +R)−1 (3.3f)

The weighted error in Equation (3.3)(c) corrects the predicted mean given an observation,

and Equation (3.3)(d) reduces the variance of the belief by an amount proportional to the

observation covariance. Taken together, Equations3.3(a-f) define a specific form of the

Kalman filter known as theforward innovation model.

3.2.2 The Backward Pass (RTS Equations)

The forward pass finds the mean and variance of the statesxt, conditioned onpastob-

servations. The backward pass corrects the results of the forward pass by evaluating the

influence offutureobservations on these estimates. Once the forward recursion has com-

pleted and the final values of the mean and variancexT |T andPT |T have been calculated,

the backward pass proceeds in reverse by evaluating the influence of future observations

17

on the states in the past:

xt|T = xt|t +Gt(xt+1|T − xt+1|t) (3.4a)

Pt|T = Pt|t +Gt(Pt+1|T − Pt+1|t)G
T
t (3.4b)

wherext+1|t andPt+1|t are 1-step predictions

xt+1|t = Axt|t (3.4c)

Pt+1|t = APt|tA
T +Q (3.4d)

and the smoother gain matrixG is computed as:

Gt = Pt|tA
TP−1

t+1|t (3.4e)

The cross variancePt,t−1|T = Cov[Xt−1, Xt|y1:T], a useful quantity for parameter estima-

tion (section3.3.1), may also be computed at this point:

Pt−1,t|T = Gt−1Pt|T (3.4f)

3.3 Learning Linear Dynamical Systems

Learninga dynamical system from data (system identification) involves finding the para-

metersθ = {A,C,Q,R} and the distribution over hidden variablesQ = P (X | Y, θ)
that maximizes the likelihood of the observed data. The maximum likelihood solution for

these parameters can be found through iterative techniques such as expectation maximiza-

tion (EM). An alternative approach is to usesubspace identificationmethods to compute

an asymptotically unbiased solution in closed form. In practice, a good approach is to use

subspace identification to find a good initial solution and then to refine the solution with

EM. The EM algorithm for system identification is presented in section3.3.1and subspace

identification is presented in section3.3.2.

18

3.3.1 Expectation Maximization

The EM algorithm is a widely applicable iterative procedure for parameter re-estimation.

The objective of EM is to find parameters that maximize the likelihood of the observed

dataP (Y | θ) in the presence of latent variablesx. EM maximizes thelog-likelihood:

L(θ) = logP (Y | θ) = log

∫
X

P (X, Y | θ)dX (3.5)

Usinganydistribution over the hidden variablesQ, a lower bound on the log-likelihood

F(Q, θ) ≤ L(θ) can be obtained by using Jensen’s inequality (at equation (3.6b)). EM is

derived by maximizingF(Q, θ) with respect toQ, which results inQ = P (X | Y, θ), the

posterior over hidden variables given the data and current parameter settings:

L(θ) = logP (Y | θ) = log

∫
X

P (X, Y | θ)dX (3.6a)

= log

∫
X

Q(X)
P (X, Y | θ)
Q(X)

dX ≥
∫

X

Q(X) log
P (X,Y | θ)
Q(X)

dx (3.6b)

=

∫
X

Q(X) logP (X, Y | θ)dX −
∫

X

Q(X) logQ(X)dx (3.6c)

= F(Q, θ) (3.6d)

The EM algorithm alternates between maximizing the lower-bound on the likelihoodF
with respect to the parametersθ and the distributionQ, holding the other quantity fixed.

Starting from some initial parametersθ0 we alternately apply:

Expectation-step (E-step):Qk+1 ← arg max
Q
F(Q, θk) (3.7a)

Maximization-step (M-step):θk+1 ← arg max
θ
F(Qk+1, θ) (3.7b)

wherek indexes an iteration, until convergence.

The E-Step The E-step is maximized whenQ is exactly the conditional distribution of

X,Qk+1(X) = P (X | Y, θk), at which point the bound becomes an equality:F(Qk+1, θk) =

L(θ). The maximum value ofQk+1(X) can be found by solving the LDS inference

(Kalman smoothing) problem: estimating the hidden state trajectory given the inputs, the

outputs, and the parameter values. This algorithm is outlined in section3.2.

19

The M-Step As noted in Equation (3.7)(b), the M-step is to find the maximum ofF(Qk+1, θ) =∫
X
Qk+1(X) logP (X, Y | θ)dX −

∫
X
Qk+1(X) logQk+1(X)dx with respect toθ. The

parameters of the systemθk+1 = {Â, Ĉ, Q̂, R̂} are estimated by taking the corresponding

partial derivative of the expected log-likelihood, setting to zero and solving, resulting in

Ĉ =

(
T∑

t=1

ytE{xT
t | y1:T}

)(
T∑

t=1

E{xtx
T
t | y1:T}

)−1

(3.8a)

R̂ =
1

T

(
T∑

t=1

yty
T
t − Ĉ

T∑
t=1

E{xt | y1:T}yT
t

)
(3.8b)

Â =

(
T∑

t=2

E{xtx
T
t−1 | y1:T}

)(
T∑

t=2

E{xt−1x
T
t−1 | y1:T}

)−1

(3.8c)

Q̂ =
1

T − 1

(
T∑

t=2

E{xtx
T
t | y1:T} − Â

T∑
t=2

E{xt−1x
T
t | y1:T}

)
(3.8d)

Also note that the state covariance matrixQ̂ (see Equation (3.8d)) is positive semi-definite

by construction since it is theSchur complement[32] of

T∑
t=1

E

{[
xtx

T
t xtx

T
t−1

xt−1x
T
t xt−1x

T
t−1

]
| y1:T

}
≥ 0 (3.9)

3.3.2 Subspace Identification

Learning algorithms based on Expectation-Maximization (EM) iteratively optimize the

observed data likelihoodby (a) computing posterior estimates of first and second moments

of the latent variable, and (b) computing the most likely parameters given these estimates

of the latent variable. The Maximum-Likelihood Estimate (MLE) isstatistically efficient,

and EM-based methods can compute the MLE from finite data samples. However, EM-

based methods arecomputationally inefficientbecause they only guarantee finding alocal

optimum of the observed data likelihood from a given starting point, and hence require

multiple restarts from random parameter initializations to search for the MLE.

In contrast,Subspace Identification(Subspace ID) algorithms view the sequential data

model learning task as being areduced-rank regressionfrom past to future observations,

20

1000 200

Sunspot numbersA. B. C.

0

300

Figure3.1: A. Sunspot data, sampled monthly for200 years. Each curve is a month, the

x-axis is over years. B. First two principal components of a1-observation Hankel matrix.

C. First two principal components of a12-observation Hankel matrix, which better reflect

temporal patterns in the data.

with the goal of minimizing thepredictive reconstruction errorin L2 norm. The reason

it is not an ordinary regression task is that the algorithm must compute asubspaceof the

observation space which allows prediction of future observations. This subspace is pre-

cisely the domain of the multivariate continuous latent state variable, and the parameters

that map from this subspace to future latent states and observations are precisely the dy-

namics matrix and observation matrix of the LDS and products thereof. Note that, like

other LVMs, since the LDS is anunidentifiablemodel, we only aim to discover the correct

parameters up to a similarity transform. The benefits and drawbacks of Subspace ID are

in some ways complementary to those of EM. Unlike multi-restart EM, Subspace ID is

somewhatstatistically inefficientsince it does not achieve the MLE for finite data sam-

ples, but it is much morecomputationally efficientsince it is not prone to local minima,

and theSingular Value Decomposition (SVD)[32] attains the optimum parameter estimate

efficiently in the limit. Thus at the granularity where SVD is a subroutine, Subspace ID is

a non-iterative algorithm that admits aclosed-form solution, though SVD internally is an

iterative algorithm.

Subspace ID has been described clearly in the literature in several places such as Van

Overschee (1996) [27], Katayama (2005) [29] and more recently in Boots (2009) [3].

We summarize theuncontrolledversion of the algorithm here and refer the reader to the

aforementioned references for details.

One useful degree of freedom that Subspace ID allows us is the ability to incorporate

21

knowledge about thed-step observabilityof the linear system by specifying the length

of observation sequences that are treated as features by the algorithm. This is accom-

plished by stacking observations in ablock Hankel matrix[26] during regression, forcing

the resulting parameter estimates to reconstruct entiresequencesof observations based on

multiple past observations. DefineY0|i−1 as the following matrix of observations, where0

andi are timesteps within the training data sequence:

Y0|i−1 =

y0 y1 · · · yj−1

y1 y2 · · · yj

...
...

...
...

yi−1 yi · · · yi+j−2

mi×j

(3.10)

Yp denotes a certain matrix of “past” observations, andY +
p denotes its one-timestepexten-

sion. Also,Yf , Y
−
f denote matrices of “future” inputs and observations and their one-step

contractions:

Yp ≡ Y0|i−1 Y +
p ≡ Y0|i

Yf ≡ Yi|2i−1 Y −
f ≡ Yi+1|2i−1

Matrices of the above form, with each block of rows equal to the previous block but shifted

by a constant number of columns, are calledblock Hankelmatrices [26]. We also define

a matrix of Kalman filter latent state estimates at timei, conditioned on past observations

in Yp, asX̂i:

X̂i = [x̂i x̂i+1 . . . x̂i+j] ∈ Rn×j (3.11)

Assuming the observations truly arise from an LDS, then the following relationship

between expected future observations, latent states and LDS parameters must hold:

E{Yf | X̂i} =

Cx̂i Cx̂i+1 · · · Cx̂j−1

Cx̂i+1 Cx̂i+2 · · · Cx̂j

Cx̂i+2 Cx̂i+3 · · · Cx̂j+1

...
...

...
...

Cx̂2i−1 Cx̂2i . . . Cx̂2i+j−2

mi×j

(3.12)

22

Γi is defined as theextended observability matrix:

Γi =

C

CA

CA2

...

CAi−1

mi×n

(3.13)

Γi is related to its one-step contractionΓi−1 by:

Γi =

[
Γi−1

CAi−1

]
(3.14)

UsingΓi from equation (3.13) in equation (3.12),E{Yf | X̂i} can be written as:

E{Yf | X̂i} = ΓiX̂i (3.15)

Note thatΓiX̂i is a rankn linear function of state that lies inspan {Yp}. The linear

projectionof Yf ontoYp may be used to findΓiX̂ from Yf andYp, whereX̂ denotes the

Kalman filter states conditioned on observations inYp. These Kalman filter state estimates

X̂i can be computed exactly in closed form as a linear function ofYp [27]. The projection

is obtained by solving a set of linear equations

Yf/Yp = YfY
†
p Yp = YfY

T
p (YpY

T
p)−1Yp (3.16)

where† denotes the Moore-Penrose pseudo-inverse [32]. DefineOi,Oi+1 asprojections

of future observations onto past observationsin the following way:

Oi = Yf/Yp = ΓiX̂i (3.17a)

Oi+1 = Y −
f /Y

+
p = Γi−1X̂i+1 (3.17b)

Subspace ID exploits relationships between several subspaces of interest to compute es-

timates ofX̂i andX̂i+1. The rank ofOi is the dimensionality of the state space, the row

space ofOi is equal to the row space of̂Xi and the column space ofOi is equal to the

column space ofΓi [27]. Compute the SVD ofOi :

Oi = UΣVT (3.18)

23

By properties of SVD , we know the columns ofU are an optimal basis for compressing

and reconstructing sequences ofi future observations.

As mentioned earlier, having multiple observations per column inYf is particularly

helpful for learning models of systems that are not1-step observable, e.g. when the un-

derlying dynamical system is known to have periodicity and a single observation is not

enough to tell us where we are in the period. For example, Figure3.1(A) shows200 years

of sunspot numbers, with each month modeled as a separate variable. Sunspots are known

to have two periods, the longer of which is11 years. When subspace ID is performed

using a12-observation Hankel matrixYf andYp, the first two columns ofU , i.e. the first

two principal components ofOi, resemble the sine and cosine bases (Figure3.1(C)), and

the corresponding state variables therefore are the coefficients needed to combine these

bases so as to reconstruct12 years of the original sinusoid-like data, which captures their

periodicity. This is in contrast to the bases obtained by SVD on a1-observationYf andYp

(Figure3.1(B)), which reconstruct just the variation within a single year.

ThoughYp andYf have finitely many observations from past and future, this window

size does not need to grow indefinitely for the algorithm to converge to the correct parame-

ter estimates. For any given dynamical system, there’s a minimum window length that will

allow us to recover the true dynamics. The minimum window length is the shortest one

in which we are guaranteed to have positive probability of observing something relevant

to each dimension of latent state. Note that we don’t need to guarantee a high probability

of making such observations, or to guarantee that our observations are particularly infor-

mative about state, only that there is a positive probability of getting a positive amount

of information. It is possible that the minimum window length is infinite, but then the

dimensionality of the dynamical system would need to be infinite as well, hence it would

a system that is difficult to recover with any method.

Subspace ID also allows a simple yet principled method of model selection: the order

of the system can be determined by inspecting thesingular valueson the diagonalΣ, and

all components whose singular values lie below a user-defined threshold can be dropped.

One common way of choosing the dimensionality is to look for a “knee” in the graph of

24

decreasing-ordersingular values, indicating the noisy data arises from a low-rank system.

Then we estimateΓi, Γi−1 andX̂i as:

Γi = UΣ1/2 (3.19)

which, based on equation (3.14), allows us to estimateΓi−1:

X̃i = Γ†iOi (3.20a)

X̃i+1 = Γ†i−1Oi+1 (3.20b)

Here we useX̃i to denoteestimatesof the true Kalman filter statesX̂ conditioned on

observations inYp. An important result that allows Subspace ID to claimconsistencyis

that, as the number of columnsj in our Hankel matrices go to infinity, the state estimates

converge to the true Kalman filter state estimates conditioned on observations inYp (up to

a linear transform) [27]:

X̃i → X̂i

X̃i+1 → X̂i+1

After computing the estimates̃Xi andX̃i+1 we can estimate the LDS parametersA andC

by solving the following system of equations, which is straightforward:[
X̂i+1

Yi|i

]
=

[
A

C

] [
X̂i

]
+

[
ρw

ρv

]
(3.21a)

Here,ρw, ρv are theresidual errorsof the noisy LDS, which are assumed to have zero-

mean Gaussian distributions. We can estimate the covariancesQ̂ andR̂ from the estimated

residuals: [
Q̂ Ŝ

ŜT R̂

]
= E

{[
ρ̂w

ρ̂v

] [
ρ̂T

wρ̂
T
v

]}
(3.21b)

Since the state estimates converge to their true values, the parameter estimatesθ = {Â, Ĉ, Q̂, R̂}
are asymptotically unbiased as the length of the training sequences goes to infinity [27].

25

3.4 Stability

We describe stability of dynamical systems based on material from [33]. Stability is a

property of dynamical systems defined in terms ofequilibrium points. If all solutions

of a dynamical system that start out near an equilibrium statexe stay near or converge

to xe, then the statexe is stable or asymptotically stable respectively. A linear system

xt+1 = Axt (with zero noise) isinternally stableif the matrixA is stable in the sense

of Lyapunov (see below). Internal stability is sufficient, though not necessary, for the

stability of a dynamical system. The standard algorithms for learning linear Gaussian

systems described in Section3.3 do not enforce stability; when learning from finite data

samples, the maximum likelihood or subspace ID solution may be unstable even if the true

system is stable due to the sampling constraints, modeling errors, and measurement noise.

A square matrixA is said to beasymptotically stable in the sense of Lyapunovif and

only if for a dynamics matrixA and any given positive semi-definite symmetric matrixQ

there exists a positive-definite symmetric matrixP that satisfies the followingLyapunov

criterion:

P − APAT = Q (3.22)

There is a direct connection to this criterion and the Kalman filter update in Equation

(3.3)(b). For a linear dynamical system,A is the dynamics matrix,P is the current belief

covariance, andQ is the positive semi-definite state error covariance matrix (Equation

(3.8d)). Thus, the Lyapunov criterion can be interpreted as holding if there exists a belief

distribution where the predicted belief over state is equivalent to the previous belief over

state. It is interesting to note that the Lyapunov criterion holdsif and only if the spectral

radiusρ(A) ≤ 1. Recall that a matrixM is positive definite (semi-definite)iff zTMz > 0

(≥ 0) for all non-zero vectorsz. Letλ be an left eigenvalue ofA andν be a corresponding

eigenvector, giving usνTA = λνT, then

νTQν = νT(P − ATPA)ν = νTPν − νTλPλν = νTPν(1− |λ|2) ≥ 0 (3.23)

sinceνTPν ≥ 0, it follows that|λ| ≤ 1 and thusρ(A) ≤ 1. Whenρ(A) < 1, the system

is asymptotically stable. To see this, supposeDΛD−1 is the eigen-decomposition ofA,

26

whereΛ hasthe eigenvalues ofA along the diagonal andD contains the eigenvectors.

Then,

lim
k→∞

Ak = lim
k→∞

DΛkD−1 = D
(

lim
k→∞

Λk
)
D−1 = 0 (3.24)

since it is clear thatlimk→∞ Λk = 0. If ρ(A) = 1, thenA is stable but not asymptotically

stable, and the statext oscillates aroundxe indefinitely. However, this is true only under

the assumption of zero noise. In the case of an LDS with Gaussian noise, a dynamics

matrix with unit spectral radius would cause the state estimate to move steadily away from

xe. Hence such an LDS is asymptotically stable only whenρ(A) is strictly less than one,

and the matrixQ in equation (3.22) above is required to be positive definite. Ifρ(A) = 1,

the LDS is said to bemarginally stable.

3.5 Related Work

The EM algorithm for LDS was originally presented in [34]. Auto-Regressive (AR), Mov-

ing Average (MA) and Auto-Regressive Moving Average (ARMA) models are simpler

time series modeling methods that are provably subsumed by LDSs [25]. Nonlinear dy-

namical systems and their learning algorithms have also been studied, such as theextended

Kalman filter [35, 36] which linearizes the nonlinear system around the state estimate

at every step, allowing the approximate state distribution to remain Gaussian. An EM

algorithm for learning nonlinear dynamical systems has also been proposed[16], which

uses Extended Kalman Smoothing to compute the non-Gaussian conditional hidden state

distribution over the nonlinear dynamical system, and Radial Basis Functions (RBFs) to

represent the nonlinearities.

27

28

Chapter 4

Fast State Discovery and Learning in

Hidden Markov Models

We first look at an algorithm for learning discrete-state LVMs with continuous observa-

tions, specifically Gaussian HMMs. Typical algorithms for learning HMMs rely on know-

ing the correct value for the number of states beforehand, and then optimizing the observed

data likelihood for a fixed number of states, until a local optimum is reached. In contrast,

STACS (Simultaneous Temporal and Contextual Splitting) reformulates the search space

by incrementally increasing the number of states (by splitting an existing state) during

parameter optimization in a way that maximally improves observed data likelihood. The

algorithm terminates when the improvement in explanation of the data by further HMM

growth no longer justifies the increase in model complexity, according to a standard model

selection scoring criterion. Both the splitting and scoring processes are carried out effi-

ciently by selective application of Viterbi approximations. This process makes parameter

learning more efficient and also helps avoid the local minima which greatly hinder fixed-

topology HMM learning algorithms, particularly for large state spaces.

29

4.1 Introduction

There has been extensive work on learning the parameters of a fixed-topology HMM. Sev-

eral algorithms for finding a good number of states and corresponding topology have been

investigated as well (e.g. [37,38, 39]), but none of these are used in practice because

of one or more of:inaccuracy,high computational complexity, orbeing hard to imple-

ment. Normally, the topology of an HMM is chosena priori and a hill-climbing method

is used to determine parameter settings. For model selection, several HMMs are typi-

cally trained with different numbers of states and the best of these is chosen. There are

two problems with this approach: firstly, training an HMM from scratch for each feasi-

ble topology may be computationally expensive. Secondly, since parameter learning is

prone to local minima, we may inadvertently end up comparing a ‘good’m1-state HMM

to a ‘bad’m2-state HMM. The standard solution to this is to train several HMMs for each

topology with different parameter initializations in order to overcome local minima, which

however compounds the computational cost and is ineffectual for large state spaces. For

example, Figure4.1(A) shows a simple data sequence where many training algorithms

can get caught in local minima. To illustrate the concepts we discuss, we shall use this

example throughout this chapter.

Because of these issues, many researchers have previously investigated top-down state-

splitting methods as an appealing choice for topology learning in HMMs with continu-

ous observation densities. This chapter describesSimultaneous Temporal and Contextual

Splitting(STACS), a recently proposed [40] top-down model selection and learning algo-

rithm that constructs an HMM by alternating between parameter learning and model selec-

tion while incrementally increasing the number of states. Candidate models are generated

by splitting existing states and optimizing relevant parameters, and are then evaluated for

possible selection. Unlike previous methods, however, the splitting is carried out in a way

that accounts for bothcontextual(observation density) andtemporal(transition model)

structure in the underlying data in a more general manner than the state-splitting methods

mentioned above, which fail on the simple example in Figure4.1(A). In this research, we

closely examine these competing methods and illustrate the key differences between them

30

andSTACS, followed by an extensive empirical comparison. Since hard-updates training

is a widely used alternative to soft-updates methods in HMMs because of its efficiency,

we also examine a hard-updates version of our algorithm,Viterbi STACS(V-STACS), and

explore its pros and cons for model selection and learning with respect to the soft-updates

method. We also evaluate STACS as an alternative learning algorithm for models ofpre-

determinedsize. To determine the stopping point for state-splitting, we use theBayesian

Information Criterion[41], or BIC score. We discuss the benefits and drawbacks of this

in Section4.3.3. We compare our approach to previous work on synthetic data as well

as several real-world data sets from the literature, revealing significant improvements in

efficiency and test-set likelihoods. We compare to previous algorithms on a sign-language

recognition task, with positive results. We also describe an application of STACS to learn-

ing models for detecting diverse events in real-world unstructured audio data.

Throughout this chapter, assume the HMM notation introduced in Chapter2.

−2

0

2

4

6

8

10

12

14

16

1

2

3

 h

 h

 h 1

2

3 4

 h

 h

 h

 h

(A) (B) (C)

Figure 4.1: A. A time series from a4-state HMM. Observations from the two statesdown-

middle-upandup-middle-downoverlap and are indistinguishable without temporal infor-

mation. B. The HMM topology learned by ML-SSS and Li-Biswas on the data in A. C.

The correct HMM topology, successfully learned by the STACS algorithm.

31

4.2 Related Work

There has been extensive work on HMM model selection. However, most of this work is

either tailored to a specific application or is not scalable to learning topologies with more

than a few states. The most successful approaches are greedy algorithms that are either

bottom-up (i.e., starting with an overly large number of states) or top-down (i.e., starting

with a small or single-state model). We will briefly discuss the bottom-up approaches and

argue that they are unsuitable for practical large-scale HMM model selection as compared

to top-down approaches. After this, we will discuss the major top-down approaches from

the literature in more detail.

The primary drawbacks of bottom-up techniques are (a) having to choose and evalu-

ate merges from amongN2 candidate pairs, (b) having to know the maximum number of

states beforehand and (c) difficulty in generalizing to real-valued observations. Bottom-up

topology learning techniques start off with a superfluously large HMM and prune para-

meters and/or states incrementally to shrink the model to an appropriate size. Stolke and

Omohundro [42] demonstrate a Bayesian technique for learning HMMs by successively

merging pairs of states for discrete-observation HMMs, followed by Baum-Welch to opti-

mize parameter settings. Their model-merging technique starts off with one state for each

unique discrete-valued observation, uses a heuristic to pick the top few merge candidates

to evaluate. Another bottom-up approach is the Entropic Training technique of Brand

[39]. This technique uses an entropy-based prior that favors simpler models and relies on

an iteratively computed MAP estimator to successively trim model parameters. Though

the algorithm applies to real-valued observations and does not require the computation of

merges, it is complex, and the problem of having to start with a good upper bound onN

still holds true.

We therefore favor top-down methods for HMM model selection, especially when the

number of states may be large. We define some terminology first:split designrefers to

the process of splitting an HMM state, optimizing parameters and creating an HMM for

possible selection. HMMs created by designing different splits are calledcandidates. The

two major alternative top-down approaches can be summarized as follows:

32

h*
h0

h1

h0 h1

(A) (B) (C)

Figure 4.2: An illustration of the overly restrictive splits in ML-SSS. A. Original un-split

stateh∗. B. A contextual splitof h∗ in the ML-SSS algorithm. Statesh0 andh1 must have

thesametransition structures and different observation models. C. Atemporal split. State

h0 has the incoming transition model ofh∗ andh1 has its outgoing ones.

Li-Biswas: Thisalgorithm [37] examines two model selection candidates at every step:

one obtained by splitting the state with largest observation density variance, and the other

by merging the two states whose means are closest in Euclidean space. These candidates

are then optimized with EM on the entire HMM. The candidate with better likelihood is

chosen at each step, terminating when the candidates are worse than the original model.

The primary drawback with this heuristic is that it ignores dynamic structure while de-

ciding which states to split: a single low-variance state might actually be masking two

Markov states with overlapping densities, making it a better split candidate. Training two

candidates with full EM is also inefficient especially when they may not be the best can-

didates, as our empirical evaluations will show.

ML-SSS: Maximum-Likelihood Successive-State-Splitting[38] is designed to learn

HMMs that model variations in phones for continuous speech recognition systems. ML-

SSS incrementally builds an HMM by splitting one state at a time, considering allm

possible splits as candidates in each timestep. However, instead of full EM for each can-

didate, the split on stateh∗ into h0 andh1 (figure4.2) is trained by a constrained iterative

optimization of the expected likelihood gain from performing the split, while holding all

γt(h) andξt(h, h′) constant forh, h′ 6= h∗. The iterations are performed over all timesteps

33

t with non-zero1 posterior occupancy probability forh∗ . Each state is considered for two

kinds of splits, acontextual split(Figure4.2(B)) that optimizes only observation densities,

and atemporal split(figure4.2(C)) that also optimizes self-transition and inter-split-state

transition probabilities.

Though more efficient than brute-force and Li-Biswas, the fact that ML-SSS does not

model transitions to and from other states while splitting makes it fail to detect underlying

Markov states with overlapping densities. For example, ML-SSS with BIC converges on

the HMM in figure4.1(B) while the true underlying HMM, successfully found by STACS,

is shown in figure4.1(C). Also, having to consider all data points with non-zero posterior

probabilityγt(h
∗) on every split is expensive in dense data with overlapping densities.

4.3 Simultaneous Temporal and Contextual Splits

STACS is based on the insight that EM for sequential data is more robust to local min-

ima for small state spaces (e.g. two states) but less so for large state spaces. STACS uses

this insight to use a constrained two-state EM algorithm to break out of local minima and

increase state space size. STACS algorithms perform parameter learning for continuous-

density HMMs with Gaussian observation models, while simultaneously optimizing state

space size and transition topology in a data-driven fashion. Unlike [38], our method ac-

counts for both temporal and contextual variations in the training observations while split-

ting states (i.e. increasing the state space size). Unlike [37], our method evaluates every

existing state as a possible candidate for splitting. Since naively evaluating all possible

ways to increase state space size would be very expensive computationally, STACS algo-

rithms make selective use ofViterbi approximations[42,43] for efficient approximation of

the data log-likelihood, as well as some other assumptions detailed below. These approx-

imations keep the complexity of each iteration of STACS and V-STACS to beO(τm2),

with V-STACS being faster by a constant factor that is quite noticeable in practice. Hereτ

is the length of the training sequence andm is the number of states currently in the HMM.

1In practice, non-zero corresponds to being above a specified cutoff value

34

Experimentsshow that STACS outperforms alternative topology learning methods [38,

37] in terms of running time, test-set likelihood and BIC score on a variety of real-world

data, and outperforms regular EM even on learning models of predetermined size. This

top-down approach proved to be highly effective at avoiding local minima as well, allow-

ing STACS to discover the true underlying HMM in difficult synthetic data where EM

failed to find the correct answer even with50 restarts. This highlights the problem with

cross-validation for determining the number of states, which we alluded to in Section4.1:

due to the local minima problems rife in EM-based HMM learning, there is no way to

ensure during cross-validation that the best possible HMMs of different sizes are being

compared. STACS avoids this problem by guaranteeing a consistent increase in data likeli-

hood as it searches the space of HMMs of varying state space sizes, based on monotonicity

results regarding variants of the EM algorithm [44].

We describe the overall algorithm as well as details of STACS and V-STACS below.

First, some notation: when considering a split of stateh, HMM parameters related to state

h (denoted byλh), including incoming and outgoing transition probabilities, are replaced

by parameters for two offspring statesh1 andh2 (denoted byλh1,h2). The time indices

assigned to stateh, denoted byτ(h), are now assumed to have unknown hidden state

values, but only in the restricted state space{h1, h2}. Therefore when searching for a

locally optimal candidate, only the parametersλh1,h2 change, and the only observations

that will affect them are those at timestepsτ(h), i.e.,Xτ(h). Letλ\h denote parameters not

related to stateh.

4.3.1 The Algorithm

STACS and V-STACS both have the following overall procedure. For each step that is

not constant-time, we list the asymptotic complexities as[·] or as[·, ·] respectively if they

differ. Details on candidate generation and candidate selection are given in subsequent

sections.

1. Initialization: Initialize λ to a single-state HMM (m= 1) usingX. [O(τ)]

35

2. Learning: Use Baum-Welch or Viterbi Training until convergence ofP [X | λ].

[O(τm2)]

3. Candidate Generation: Split each state, to generatem candidate HMMs each with

m+ 1 states.[O(τm2),O(τm)]

4. Candidate Selection: Score the original HMM and each candidate, and pick the

highest scoring one asλ′. [O(τm2),O(τm)]

5. Repeat or Terminate: If a split candidate was picked,λ← λ′,m← m+1 and go to

step 2. Else if original HMM was picked, terminate and returnλ′.

4.3.2 Generating Candidates

To generate a candidate based on stateh resulting in new statesh1 andh2, we devised

two novel variants of EM to efficiently compute optimal means, variances and transition

parameters of the resulting2 states. We first perform Viterbi to find the optimal state

sequenceH∗ by maximizingP (X,H | λ). We then constrain the parameters for all other

states (λ\h). We assume all timesteps belonging to other states inQ∗ are associated with

those states exclusively, which is equivalent to approximating the posterior belief at each

timestep by a delta function at the Viterbi-optimal state. Then, we performSplit-State

Viterbi Training(for V-STACS) orSplit-State Baum-Welch(for STACS) to optimizeλh1,h2

on the timesteps associated with stateh i.e.Xτ(h). This effectively optimizes apartially

observed likelihoodP (X,H∗
\τ(h) | λ).

Candidate generation is highly efficient: Split-State Viterbi Training isO(|τ(h)|),
Split-State Baum-Welch isO(m|τ(h)|). Since|τ(h)| is equal toτ/m on average, and

there arem candidates to be generated, the total cost isO(mτ) andO(τm2) respectively.

Split-State Viterbi Training

Split-State Viterbi Training is the candidate generation algorithm for V-STACS. The algo-

rithm learns locally optimal values for the parametersλh1,h2 by alternating the following

36

two steps for each iterationi until convergence:

E-step : H i
τ(h) ← arg maxH P (Xτ(h), H

∗
\τ(h), H | λ\h, λi

h1,h2
)

M-step : λi+1
h1,h2

← arg maxλ P (Xτ(h), H
∗
\τ(h), H

i
τ(h) | λ\h, λ)

Here,H∗
\τ(h) denotes the base model Viterbi path excluding timesteps belonging to state

h. The first step above computes an optimal path through the split-state space. The second

step updates the relevant HMM parameters with their MLE estimates for a fully observed

path, which are simply ratios of counts for transition parameters, and averages of subsets

of Xτ(h) for the observation parameters. Convergence occurs when the state assignments

on τ(h) stop changing. The E-step of Split-State Viterbi Training is carried out using

a novel adaptation of Viterbi (calledSplit-State Viterbi) to the task of finding an opti-

mal path over a binary state space through a subset of the data while constraining the

rest to specific states. Given below is pseudocode for the Split-State Viterbi algorithm.

Split-State Viterbi(λ,H∗, τh, Xτh)

Initialization: Increase the number of states in the HMM by 1. Initialize new para-

meters for statesh1 andh2 that replace stateh. For all other statesh′ and fori, j = 1, 2:

πhi
← 1

2
πh

Th′hi
← 1

2
Th′h

Thih′ ← Thh′

Thihj
← 1

2
Thh

Ohi
← initialize to MLE Gaussian usingXτ(h) plus noise

Loop: for k = 1 . . . |τ(h)|
t← τ(h)[k]

if t == 1 // t is the1st timestep

then fori ∈ {1, 2}
δh
t (i)← πhi

Ohi
(x1)

ψh
t (i)← −1

37

else if(t− 1) == τ(h)[k − 1] // the previous timestep is also being optimized

then fori ∈ {1, 2}
δh
t (i)← [maxj∈{1,2} δ

h
t−1(j)Thjhi

]Ohi
(xt)

ψh
t (i)← arg maxj∈{1,2} δ

h
t−1(j)Thjhi

else fori ∈ {1, 2} // the previous timestep belongs to a different stateq∗t−1

δh
t (i)← Tq∗t−1hi

Ohi
(xt)

Termination:

For all subsequences ofτ(h) that are contiguous in{1 . . . τ}, backtrack throughψh from

the end of the subsequence to its beginning to retrieve the corresponding portion ofH∗
h.

returnH∗
h.

The running time is clearly linear in the number of non-determined timesteps|τ(h)| since

each maximization in the algorithm is always over2 elements no matter how large the

actual HMM gets. Note that we allow the incoming and outgoing transition parameters

of h1, h2 to be updated as well, which allows better modeling of dynamic structure during

split design.

Split-State Baum-Welch

Split-State Baum-Welch also learns locally optimal values for the state-split parameters

λh1,h2, and like Baum-Welch it does so by modeling theposteriorover the hidden state

space which in this case consists of{h1, h2}. The following two steps are repeated for

each iterationi until convergence:

1. E-step: Calculate stepwise occupancy and transition probabilities{γh, ξh} from

{λ\τ(h),λi
h1,h2

,Xτ(h),H∗
\τ(h)}; compute expectations.

2. M-step:

{λh1,h2}i+1 ← arg maxλ P (Xτ(h), H
∗
\τ(h) | λ\h, λ)

38

TheE-step step is carried out using a specialized two-state partially-constrained-path ver-

sion of the forward-backward algorithm to first calculate the forward and backward vari-

ables, which then give the requiredγh andξh values forh1 andh2. The idea is the same as

Split-State Viterbi but with soft counts and updates. The entire algorithm isO(m|τ(h)|),
since the update step requires summations over all observations inτ(h) for at leastm

transition parameters. Since it is not possible to compute the updated overall likelihood

from this split algorithm, convergence of Split-State Baum-Welch is heuristically based on

differences in the split-stateα variables in successive timesteps.

Though slower, Split-State Baum-Welch searches a larger space of candidate models

than Split-State Viterbi Training, performing better on ‘difficult’ splits (such as the one

required in Figure4.1 with high hidden variable entropy) just as Baum-Welch performs

better than Viterbi Training in such situations.

4.3.3 Efficient Candidate Scoring and Selection

We compare candidatesamongst each otherusing the fast-to-compute Viterbi likelihood

after optimizing the split parameters. Afterwards, as we described earlier, we compare

the best candidate tothe original modelusing BIC score [41] (a.k.a.Schwarz criterion),

an efficiently computable approximation of the true posterior probability. The latter is

intractable since it involves integrating over exponentially many possible models. The

BIC score is an asymptotically accurate estimate (in the limit of large data) of the pos-

terior probability of a model when assuming a uniform prior. A Laplace approximation

is applied to the intractable integral in the likelihood term, and terms that do not depend

on data set size are dropped to obtain the approximated posterior log-probability. BIC

effectively punishes complexity by penalizing the number of free parameters, thus safe-

guarding against overfitting, while rewarding goodness-of-fit via the data log-likelihood.

Let #λ denote the number of free parameters in HMMλ. Recall thatτ denotes the length

of the data sequence, andn denotes the number of discrete observations (or dimensionality

of the real-valued observation vector). Then,

BIC(λ,X) = logP (X | λ)− log(τn)

2
·#λ

39

For V-STACS, the likelihood is approximated by the Viterbi path likelihood using the

Viterbi approximation[42, 43]. The unsplit model Viterbi path can be updated efficiently

to compute the Viterbi paths and Viterbi path likelihoods for each candidate inO(τ/m)

amortized time, and henceO(τ) total. This avoids an extraO(τm2) step in V-STACS, and

keeps the complexity of V-STACS’ candidate generation, scoring and selection atO(mτ).

BIC as defined holds for probabilistic models with observable random variables. More

recent work has shown that the effective dimension oflatent variableBayesian Networks

is equal to the rank of the Jacobian of the transformation between the parameters of the

latent variables and the parameters of the observable variables [45]. Using the number

of free parameters is a reasonable approximation since this corresponds to the maximum

possible rank, and regular BIC with this measure has been successfully used for model

selection in HMMs in previous work [37]. Nonetheless, due to the approximate nature of

BIC for latent-variable models [45] or for high-dimensional data, test-set log-likelihood

would be a more accurate though more computationally expensive scoring criterion for

splits.

4.4 Experiments

In our experiments we seek to compare STACS and V-STACS to Li-Biswas, ML-SSS, and

multi-restart Baum-Welch, in these areas:

1. Learning models of predetermined size

2. Model selection capability

3. Classification accuracy for multi-class sequential data

For (1) and (2), we are concerned both with the quality of models learned as indicated by

test-set likelihoods (for learning predetermined-size models) and BIC scores (for learning

state space dimension), as well as running-time efficiency. For (3), we examine sequential

data where each sequence is associated with a distinct class label. For such data, HMMs

40

have been successfully used in previous applications (e.g. speech recognition [4]) to con-

struct aclassifierby training class-specific HMMs on sequences from different classes,

and using their likelihood scores on test-set sequences for classification. We will follow

the same procedure for the multiclass sequential data we examine.

4.4.1 Algorithms and Data Sets

As described earlier, STACS uses Baum-Welch for parameter learning and Split-State

Baum-Welch for split design. V-STACS uses Viterbi Training and Split-State Viterbi

Training, followed by Baum-Welch on the final model. We also implemented ML-SSS

(with a tweak for generalizing to non-chain topologies) and Li-Biswas for comparison.

We choose a wide range of real-world datasets that have appeared in previous work

in various contexts, the goal being to examine the ability of our algorithms to uncover

hidden structure in many different, realistic domains. The dimensionality of all datasets

was reduced by PCA to5 for efficiency, except for the Motionlogger dataset which is 2-D.

The AUSL and Vowel data sets are from the UCI KDD archive [46]. We list the data sets

with (training-set, test-set) sizes below.

Robot: This data set consists of laser-range data provided by the Radish Robotics Data

set Repository [47] gathered by a Pioneer indoor robot traversing multiple runs

of a closed-loop set of corridors in USC’s Salvatori Computer Science building.

This data set has appeared in previous work in relation to a robot localization task.

Among the four runs of data provided we used three for training (12, 952 observa-

tions) and one for testing (4,052 observations).

Mlog: This data set consists of real-valued motion data from two wearable accelerometers

worn by a test subject for a period of several days during daily routine. The training

set and test set contain10, 000 and4, 720 observations respectively. This data set

was previously appeared in a paper on large-state-space HMMs [48] and allows us

to compare our test-set likelihoods with previous results.

Mocap: This is a small subset of real-valued motion capture data gathered by several

41

Table 4.1: Test-set log-likelihoods (scaled by dataset size) and training times of HMMs

learned using STACS,V-STACS, ML-SSS and regular Baum-Welch with5 random

restarts. The best score and fastest time in each row are highlighted. Li-Biswas had similar

results as ML-SSS, and slower running times, for thosemwhere it completed successfully.
Data STACS V-STACS ML-SSS Baum-Welch

m = 5

ROBOT -2.41 -2.41 -2.44 -2.47

40s 13s 70s 99s

MOCAP -4.46 -4.46 -4.49 -4.46

34s 14s 49s 65s

MLOG -8.78 -8.78 -10.49 -8.78

67s 15s 9s 750s

AUSL -3.60 -3.60 -3.60 -3.43

39s 14s 33s 110s

VOWEL -4.69 -4.69 -4.68 -4.67

13s 8s 37s 95s

m = 20

ROBOT -1.93 -1.93 -1.98 -1.96

2368s 512s 2804s 4890s

MOCAP -4.38 -4.37 -4.33 -4.33

899s 203s 800s 3085s

MLOG -8.34 -8.34 -10.49 -8.40

3209s 1173s 284s 12350s

AUSL -3.16 -3.18 -3.21 -3.13

1128s 284s 1410s 3655s

VOWEL -4.40 -4.41 -4.44 -4.41

548s 189s 1009s 1285s

STACS V-STACS ML-SSS Baum-Welch

m = 40

-1.75 -1.76 -1.80 -1.78

11790s 1875s 16048s 18460s

-4.32 -4.29 -4.30 -4.37

5474s 1053s 6430s 7315s

-8.25 -8.26 -10.49 -8.38

29965s 8146s 1818s 42250s

-2.89 -2.77 -3.08 -2.99

7923s 1550s 8465s 22145s

-4.34 -4.32 -4.44 -4.33

2710s 1011s 2874s 6800s

m = 60

-1.65 -1.64 -1.69 -1.75

38696s 6086s 51527s 35265s

-4.23 -4.26 -4.23 -4.46

16889s 3470s 18498s 20950s

-8.25 -8.23 -8.29 -8.39

116891s 29379s 108358s 87150s

-2.71 -2.71 -2.86 -2.89

23699s 4613s 25156s 60035s

-4.30 -4.31 -4.44 -4.31

8296s 2714s 4407s 13360s

42

humansubjects instrumented with motion trackers and recorded by cameras while

performing sequences of physical movements. It appears in previous work [49]

in the context of a classification task on natural and unnatural motion sequences;

the best model for the task was found to be an HMM ensemble model and the state

spaces required ranged from50−60 to180 states, which makes it a natural candidate

for inclusion here. We use a training set of size10, 028 and test set of size5, 159.

AUSL: This data set consists of high-quality instrumented glove readings of Australian

sign-language words being expressed by an expert signer. The data set contains 27

repetitions each of 95 different words, with each sign consisting of around 50 22-

dimensional observations. Here we concatenate signings of 10 different words to

form a training set of size13, 435 and a test set of size1, 771.

VOWEL : This data set consists of multiple utterances of a particular Japanese vowel by

nine male speakers. We broke it up into training and test sets of4, 274 and5, 687

datapoints each.

Synthetic data: We generated synthetic data sets to examine the ability of our algorithms

to uncover the true number of states.

4.4.2 Learning HMMs of Predetermined Size

We first evaluate performance in learning models of predetermined size. In Table4.1 we

show test-set log-likelihoods normalized by data set size along with running times for

experiments using STACS and V-STACS along with ML-SSS and regular Baum-Welch

with 5 restarts. Figure4.4shows a subset of the same data in a more visually interpretable

form for them = 40 case. Here we ignore the stopping criterion and perform the best split

at each model selection step until we reachm states. For Baum-Welch, the best score from

its five runs is given along with the total time. Li-Biswas results are not shown because

most desired model sizes were not reached. However, the instances that did successfully

complete indicate that Li-Biswas is much slower than any other method considered, even

Baum-Welch, while learning models with similar scores as ML-SSS.

43

Table 4.2: BIC scores scaled by dataset size, and(number of states), of final models chosen

by STACS, V-STACS, Li-Biswas and ML-SSS. STACS and V-STACS consistently find

larger models with better BIC scores, indicating more effective split design.

Dataset STACS V-STACS Li-Biswas ML-SSS

ROBOT -1.79(39) -1.81(34) -1.98(18) -2.01(15)

MOCAP -3.54(36) -3.55(33) -3.69(20) -3.92(10)

MLOG -8.44(14) -8.45(20) -8.59(11) -10.51(1)

AUSL -2.77(44) -2.79(42) -2.92(31) -3.04(28)

VOWEL -4.47(17) -4.49(16) -4.48(17) -4.94(1)

We note that STACS and V-STACS have the fastest running times for any given HMM

size and data set, except for cases when a competing algorithm got stuck and terminated

prematurely. Figure4.3(A) shows a typical example of STACS and V-STACS running

times compared to previous methods for differentm values.

Asm grows larger and the possibility of local minima increases, STACS and V-STACS

consistently return models with better test-set scores. Figure4.3(B) shows training-set

score against running time for the ROBOT data form = 40. This is especially remarkable

for V-STACS which is a purely hard-updates algorithm. One possible explanation is that

V-STACS’ coarseness helps it avoid overfitting when splitting states.

4.4.3 Model Selection Accuracy with BIC

The final BIC scores andm values of STACS, V-STACS, Li-Biswas and ML-SSS are

shown in Table4.2when allowed to stop splitting autonomously. Note that the exact BIC

score was not used by V-STACS, just calculated for comparison. Figure4.5presents part

of the data in more visually interpretable form. In all cases, STACS converges on models

with the highest BIC score. For the MLOG data, STACS achieves a better BIC score

even with a smaller model than V-STACS, indicating that the soft-updates method found a

44

particularlygood local optimum.

The consistent superiority of STACS here may seem to contradict results from the

previous section where STACS and V-STACS were seen to be more comparable. A pos-

sible reason is that V-STACS uses the Viterbi path likelihood (which is computed during

hard-updates training anyway) in place of the true likelihood in BIC. This is done to keep

V-STACS as efficient as possible. However the resulting approximate BIC seems to under-

value good splits, resulting in early stoppage as seen here. We can conclude that, though

the Viterbi approximation works well for state-splitting, the true likelihood is preferable

for model selection purposes when using BIC.

4.4.4 Discovering the Correct Topology

We already saw that STACS is able to learn the correct number of states in the simple

example of Figure4.1, while Li-Biswas and ML-SSS are not. We generalized this ex-

ample to a larger, more difficult instance by generating a10, 000 point synthetic data set

(Figure4.6(A)) similar to the one in Figure4.1but with10 hidden states with overlapping

Gaussian observations.

Even on this data, both STACS and V-STACS consistently found the true underlying

10-state model whereas Li-Biswas and ML-SSS could not do so. Interestingly, regular

Baum-Welch on a10-state HMM also failed to find the best configuration of these10

states even after 50 restarts. This reinforces a notion suggested by results in Section4.4.2:

even in fixed-size HMM learning, STACS is more effective in avoiding local minima than

multi-restart Baum-Welch.

4.4.5 Australian Sign-Language Recognition

Though improved test-set likelihood is strong evidence of good models, it is also important

to see whether these model improvements translate into superior performance on tasks

such as classification. HMMs play one of their most important roles in the context of

supervised classification and recognition systems, where one HMM is trained for each

45

Table 4.3: Australian sign-language word recognition accuracy on a 95-word classification

task, andaverage HMM sizes, on AUSL data.

STACS V-STACS Li-Biswas ML-SSS

90.9% 95.8% 78.6% 89.5%

12.5 55 8.3 8.5

distinctsequence class. Classification is carried out by scoring a test sequence with each

HMM, and the sequence is labeled with the class of the highest-scoring HMM.

One such classification problem isautomatic sign-language recognition[50]. We test

the effectiveness of our automatically learned HMMs at classification of Australian sign

language using the AUSL dataset [1]. The data consists of sensor readings from a pair

of Flock instrumented gloves (Figure4.6(B)), for27 instances each of95 distinct words.

Each instance is roughly 55 timesteps. We retained the(x, y, z, roll, pitch, yaw) signals

from each hand resulting in12-dimensional sequential data. We trained HMMs on an

8:1 split of the data, using STACS, V-STACS, Li-Biswas and ML-SSS. Table4.3 shows

classification results along with average HMM sizes. V-STACS yields the highest accuracy

along with much larger HMMs than the other algorithms.

4.5 Application: Event Detection in Unstructured Audio

Analysis of unstructured audio scene data has a variety of applications such as:ethno-

musicology, i.e., music classification based on cultural style [51];audio diarization, i.e.,

extraction of speech segments in long audio signals from background sounds [52];audio

event detection[53] for audio mining;acoustic surveillance[54], especially for military

and public safety applications, e.g, in urban search and rescue scenarios; andhuman robot

interaction[55], for voice activated robot actuation and control.

For all these applications, accurate separation of speech from non-speech signals, or

46

backgroundnoise, is a fundamental task that can be effectively solved by applying var-

ious sequence classification algorithms. One very popular and effective classification

scheme [56] is based on HMMs. HMMs can capture the underlying hidden states in the

time-series audio data and also model the transitions in these states to represent the under-

lying dynamical system. Traditionally, HMMs for these applications have been learned

by using iterative parameter learning approaches such as Baum-Welch (EM) [4]. While

these approaches have had some success, due to limitations of Baum-Welch they have

also struggled with issues of computational complexity, reliability and scalability. One

reason for this is that Baum-Welch does not aid in the discovery of an appropriate number

of states, which is usually done heuristically or exhaustively. Since new data is obtained

rapidly and the setting can change over time, HMM training has to be highly efficient for

this application, in addition to being accurate. We applied STACS and V-STACS to the

task of learning models for detecting a variety of phenomena from raw audio data over

time. The data was obtained from MobileFusion, Inc., a Pittsburgh-based company which

(at the time this research was undertaken) was developing a commercial audio-event de-

tection software along with an underlying hardware platform. Here we describe the results

of this application.

4.5.1 Data and Preprocessing

Figure4.7(A) shows the portable sensor platform where real-time audio-event detection

is to be carried out. For our experiments, audio examples were collected using the de-

vice shown in Figure4.7(B), and were selected with the intent to cover a wide variety of

sounds representative of the respective classes of audio events. For instance, the examples

produced to support Human class models included instances of male, female and children

voices speaking in various languages and environments including offices, coffee shops

and urban outdoors. The Animal class examples included sounds of dogs, owls, wolves,

coyotes, roosters and birds. The class of Ground Vehicles included sample sounds of mo-

torcycles, cars and trucks passing by. The Aerial Vehicles, our smallest class with just 20

samples, included sounds of jets and helicopters. The Explosions class included sounds of

47

machine-gun fire, grenade blasts and gunshots. The Background class covers other sounds

such as ocean waves, city traffic, rain, thunder, crowds plus some silence samples. Details

of the data are given in Table4.4.

Since elaborate, computationally expensive feature extraction methods are not possible

during online audio event detection, we applied minimal preprocessing to the raw sound

recordings in order to prepare data for audio scene experiments. We extracted a set of 13

Mel-frequency cepstral coefficients (which is efficient) followed by assigning class labels

to each of the examples. The cepstral features were then averaged every 5 timesteps to

reduce noise and the resulting values were scaled up by a factor of 10 to avoid numerical

issues in the multivariate Gaussian code.

Table 4.4: Data Specifications. The last row shows the total number of samples, overall

average number of timesteps per sample, and total duration in minutes and seconds.

Class % # samples Av. len. (T) Duration

Human 27 128 209 40:11

Animal 17 78 37 4:58

Ground V. 17 79 47 6:57

Aerial V. 4 20 54 2:16

Explosion 18 87 11 1:34

Backgrnd. 17 83 21 12:58

100% 475 78 68:54

4.5.2 Results

The classifier was tested using 4-fold cross-validation on the dataset described above. Fig-

ure4.8and Table4.5summarize the results. We trained HMMs on the data using STACS,

V-STACS and EM (Baum-Welch). We used the number of states discovered by V-STACS

for EM, which were 56, 26, 26, 18, 14 and 34 on average for the 6 classes respectively. To

help EM escape local minima, we re-initialized it 5 times from different random starting

48

points. Training was carried out on a 1.8GHz CPU with 4GB RAM. In Figure4.8(A),

the training times are plottedin log scaleof minutes, since the disparity between EM and

our algorithms was so large. For example, for the Background class, V-STACS took 166

minutes, STACS took 243 minutes, and EM took 1023 minutes, despite having to only

learn parameters for a fixed HMM size.

We now look at classification accuracy. We focus on the classification accuracy results

of V-STACS vs. EM. STACS results were similar to V-STACS though slightly poorer in

some cases. Figure4.8(B) shows these results for each of the 6 classes, which shows that

V-STACS is consistently more accurate than EM, except for labels such as Explosions

and Background. We believe this is partly due to lack of sufficient training data (note in

Table4.4 that these classes had the shortest average sample lengths). Table4.5shows the

confusion matrices for models trained using EM (top) and V-STACS (bottom) respectively.

For each pair of actual and predicted labels, the better value of the two tables is listed

in bold (higher is better on diagonal, lower is better off-diagonal). Due to the highly

unstructured, diverse and in some cases insufficient data, neither algorithm is consistently

accurate. However V-STACS has better results on the whole, particularly for the Human

class which is of particular interest in this application. Some of the false negatives and

false positives seen in the confusion matrix can be addressed by using non-uniform priors

during classification, to compensate for the large degree of class imbalance.

4.6 Discussion

Part of the contribution of this work is empirical evidence for the conjecture that better

modeling of state context compensates more than adequately for considering fewer data

points per split in hidden state discovery. In addition, we investigated whether improved

dynamic modeling in split design can also compensate for approximating hidden state

beliefs by less precise, more efficient hard-updates methods via the V-STACS algorithm.

Evaluations show that even V-STACS produces models with higher test-set scores than

soft-updates methods like ML-SSS, Li-Biswas and Multi-restart Baum-Welch. The com-

putational efficiency of our methods can make a big difference in a number of practical

49

Table 4.5: Average Confusion Matrix for EM (top) and V-STACS (bottom). Actual (rows)

vs Predicted (columns). Each entry is a percentage of test data averaged over the cross-

validation runs, and each row sums to 100. For each entry, the better entry of the two

tables is inbold. Ties are initalics.
H A G.V. A.V. E B

H. 92.69 4.68 0 0 0 2.34

A. 17.10 73.68 0 1.31 0 7.89

G.V. 9.21 3.94 69.73 2.63 2.63 11.84

A.V. 5 0 15.00 75 5 0

E. 9.52 1.19 8.33 0 75 5.95

B. 15 8.75 5 0 3.75 67.5

H. 96.09 2.43 0.78 0 0.78 0

A. 17.10 81.57 0 0 1.31 0

G.V. 9.21 3.94 72.36 0 3.94 10.52

A.V. 5 0 5.00 80 10 0

E. 14.28 2.38 4.76 2.38 72.61 3.57

B. 13.75 11.25 7.5 0 3.75 63.75

applicationssuch as audio event-detection (Section4.5),where frequent on-the-fly retrain-

ing is often necessary.

An interesting phenomenon observed is that STACS and V-STACS consistently re-

turn larger HMMs (with better BIC scores) than ML-SSS and Li-Biswas when stopping

autonomously. One possible interpretation is that the split design mechanism continues

to find ‘good’ splits even after the ‘easy’ splits are exhausted. An illustration of this

for the Mocap data is in Figure4.3.C. This makes sense considering that model selec-

tion and parameter optimization are closely related; since parameter search is prone to

local minima, determining the best size of a model depends on being able to find regions

of parameter space where good candidate models reside. Similarly, it is surprising that

that V-STACS yielded the highest classification accuracy in the sign-language recognition

task (Section4.4.5), that too with much larger final HMMs than any other algorithm. V-

50

STACS also performed slightly better in the audio event detection task (Section4.5). More

investigation is needed in this area to see if these two things hold true in other sequence

classification domains, and if so then why.

Previous work for finding the dimensionality of HMMs withdiscrete-valuedobserva-

tions [42] and other Bayesian Networks with discrete observations [57] has demonstrated

that hard-updates model selection algorithms can yield much greater efficiency than soft-

updates methods without a large loss of accuracy. To our knowledge, however, this is the

first work that demonstrates hard-updates model selection to be competitive forcontinu-

ousobservations (Sections4.4.2,4.4.5). One possible explanation is that the coarseness

of hard-updates splitting helps avoid overfitting early on which might otherwise trap the

algorithm in a local optimum. It should also be noted that STACS can be generalized to

model selection in Dynamic Bayesian Networks or other directed graphical models that

have hidden states of undetermined cardinality, since the sum-product and max-product

algorithms for inference and learning in these models are generalizations of the Baum-

Welch and Viterbi algorithms for HMMs.

Results from Sections4.4.2and4.4.4indicate that STACS is also a competitivefixed-

size HMM learning algorithmcompared to previous approaches in terms of test-set scores

and efficiency. To our knowledge, this is the first HMM model selection algorithm that

can make this claim. Consequently, there is great potential for applying STACS to do-

mains where continuous observation-density HMMs of fixed size are used, such as speech

recognition, handwriting recognition, financial modeling and bioinformatics.

In the context of this thesis, STACS provides a more efficient way of learning dis-

crete LVMs that also have significantly fewer local-minima issues than those learned us-

ing EM. The improved learning algorithm translates to better test-set likelihood and hence

increased predictive power in the resulting HMMs.

However, though the STACS approach to learning HMMs is strictly better than EM

and other existing model selection methods, it does have drawbacks due to its heuristic

components. The greedy binary splitting approach could lead to oversplitting in some

scenarios, or miss other, better partitionings of the state space. The BIC score is only an

51

approximation to the true posterior, and hence is only an approximate scoring and stopping

criterion. Furthermore, regular BIC is not entirely suitable for temporal models [45]. A

scoring criterion based on variational Bayes [58] might be a better option, though scoring

and stopping based on test-set likelihood, as mentioned earlier, would be best. In Chap-

ter6 we see a different approach to learning HMMs using matrix decomposition methods.

Unlike STACS and EM-based approaches, this algorithm does not suffer from local min-

ima. It also simplifies model selection to a simple examination of singular values obtained

from SVD. Such matrix decomposition methods for learning LVMs are more commonly

used in learning continuous LVMs in the form ofsubspace methods, which we describe

and improve upon in the next chapter.

52

0 20 40 60 80
0

2

4

6

8

10
x 10

4

number of states

ru
nn

in
g

tim
e(

s)

STACS
V−STACS
Li−Biswas
ML−SSS

0 10 20 30 40 50 60 70 80
−2.5

−2

−1.5

number of states

sc
al

ed
 lo

g−
lik

el
ih

oo
d

STACS
V-STACS
Li−Biswas
ML−SSS
Baum−Welch(best of 5)

(A) (B)

0 1 2 3 4

x 10
4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

x 10
5

running time (s)

lo
g−

lik
el

ih
oo

d

STACS
V−STACS
Li−Biswas
ML−SSS

0 1000 2000 3000 4000 5000
−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7
x 10

5

running time (s)

BI
C

sc
or

e

STACS(stops at N=36)
V−STACS (stops at N=33)
Li−Biswas (stops at N=20)
ML−SSS (stops at N=10)

m
m
m

m

(C) (D)

Figure 4.3: A. Running time vs. number of final states on the ROBOT data set. B. Final

scaled log-likelihood (nats/datapoint) vs. number of states for learning fixed-size models

on the Robot data. C. Log-Likelihood vs. running time for learning a40-state model on

the ROBOT data. D. BIC score vs. running time on the MOCAP data when allowed to

stop splitting autonomously. Results are typical of those obtained on all data sets, shown

mostly on the Robot dataset because it allowed the largest(N = 40) Li-Biswas HMMs.

53

Robot MoCap AUSL Vowel
0

0.1

0.2

0.3

0.4

sc
al

ed
 te

st
 lo

g−
lik

el
ih

oo
d

(w
or

st
 =

 0
)

Robot MoCap AUSL Vowel
1

5

10

15

sp
ee

du
p

fa
ct

or
(s

lo
w

es
t =

 1
)

STACS
V−STACS
ML−SSS
Baum Welch

Figure4.4: Learning40-state HMMs. Top: scaled test-set loglikelihoods of learned mod-

els. Bottom: Factor of running time speedup w.r.t. slowest algorithm for learning.

54

Figure4.5: Learning state space dimensions and parameters. Top: scaled BIC scores of

learned models. Bottom: Final HMM state space size.

55

t

h
is

to
g

ra
m

 o
f x

(t
)

x(t)

(A) (B)

Figure 4.6: A. Fragment of10-state univariate synthetic data sequence used for model

selection testing. The histogram shows only7 distinct peaks, indicating that some of

the observation densities overlap completely. B. Flock5DT instrumented glove used to

collect Australian Sign Language data [1] used in our classification experiments.

It has been successfully integrated on a commercial surveillance system.It has been successfully integrated on a commercial surveillance system.

A B

Figure 4.7: (A) A mobile tactical device and (B) a fixed device on which our algorithms

were deployed

56

 H A GV AV E B0

2

4

6

8

10

Tr
ai

n
Ti

m
e

(lo
g

sc
al

e) V-STACS
STACS
EM

(A)

H A GV AV E B
50

60

70

80

90

100

 A
cc

ur
ac

y
(%

) VSTACS
EM

(B)

Figure4.8: (A) Training timesin log(minutes). V-STACS and STACS are at least an order

of magnitude faster than 5-restart EM. (B) Classification accuracies. VSTACS is better

than EM in nearly all cases.

57

58

Chapter 5

Learning Stable Linear Dynamical

Systems

In this chapter we shift our focus from discrete to continuous latent variable models. We

extend Subspace Identification1 (Section3.3.2), a popular alternative to the EM algorithm

for learning LDS parameters which originates in the controls literature. EM isstatistically

efficient: it promises to find an optimum point of the observed data likelihood for finite

amounts of training data. On the downside, however, EM iscomputationally inefficient:

each run finds only alocal optimum of this likelihood function, and hence we need many

random re-initializations to search parameter space for the global optimum. Subspace

ID reformulates the search space by trading off a small amount ofstatisticalefficiency

in return for a large increase incomputationalefficiency. Though Subspace ID does not

reach an optimum point for finite data samples, it promises to reach theglobal optimum

of the observed data likelihood in the limit of sufficient data. Subspace ID is simpler and

easier to implement than EM as well, consisting of a singular value decomposition (SVD)

of a matrix in contrast to the repeated forward-backward iterations of EM.

An additional difficulty in learning LDSs as opposed to HMMs is that standard learning

algorithms can result in models withunstabledynamics, which causes them to be ill-suited

1though our extension applies to the EM algorithm too, as we describe later

59

for several important tasks such assimulationandlong-term prediction. This problem can

arise even when the underlying dynamical system emitting the data is stable, particularly

if insufficient training data is available. which is often the case for high-dimensional tem-

poral sequences. In this chapter we propose an extension to Subspace ID that enforces

the estimated parameters to be stable. Though stability is a non-convex constraint, we

will see how a constraint-generation-based optimization approach yields approximations

to the optimal solution that are more efficient and more accurate than previous state-of-

the-art stabilizing methods.

5.1 Introduction

We propose an optimization algorithm for learning the dynamics matrix of an LDS while

guaranteeing stability. We first obtain an estimate of the underlying state sequence using

subspace identification. We then formulate the least-squares minimization problem for the

dynamics matrix as aquadratic program(QP) [59], initially without constraints. When we

solve this QP, the estimatêA we obtain may be unstable. However, any unstable solution

allows us to derive a linear constraint which we then add to our original QP and re-solve.

This constraint is a conservative approximation to the true feasible region. The above

two steps are iterated until we reach a stable solution, which is then refined by a simple

interpolation to obtain the best possible stable estimate. The overall algorithm is illustrated

in Figure5.1(A).

Our method can be viewed asconstraint generation[60] for an underlying convex

program with a feasible set of all matrices with singular values at most1, similar to work

in control systems such as [2]. This convex set approximates the true, non-convex feasible

region. So, we terminatebeforereaching feasibility in the convex program, by checking

for matrix stability after each new constraint. This makes our algorithm less conservative

than previous methods for enforcing stability since it chooses the best of a larger set of

stable dynamics matrices. The difference in the resulting stable systems is noticeable

when simulating data. The constraint generation approach also results in much greater

efficiency than previous methods in nearly all cases.

60

Oneapplication of LDSs in computer vision is learningdynamic texturesfrom video

data [61]. An advantage of learning dynamic textures is the ability to play back a realistic-

looking generated sequence of desired duration. In practice, however, videos synthesized

from dynamic texture models can quickly become degenerate because of instability in the

underlying LDS, or because of the competitive inhibition problems discussed in Chapter1.

In contrast, sequences generated from dynamic textures learned by our method remain

“sane” even after arbitrarily long durations, although we leave the problem ofcompetitive

inhibition to Chapter6. We also apply our algorithm to learning baseline dynamic models

of over-the-counter (OTC) drug sales for biosurveillance, and sunspot numbers from the

UCR archive [62]. Comparison to the best alternative methods [2,63] on these problems

yields positive results.

5.2 Related Work

Linear system identification is a well-studied subject [26]. Within this area,subspace

identification methods[27] have been very successful. These techniques first estimate

the model dimensionality and the underlying state sequence, and then derive parameter

estimates using least squares. Within subspace methods, techniques have been developed

to enforce stability by augmenting the extended observability matrix with zeros [64] or

adding a regularization term to the least squares objective [65].

All previous methods were outperformed by Lacy and Bernstein [2], henceforth re-

ferred to as LB-1. They formulate the problem as a semidefinite program (SDP) whose

objective minimizes the state sequence reconstruction error, and whose constraint bounds

the largest singular value by1. This convex constraint is obtained from the nonlinear ma-

trix inequalityIn−AAT � 0, whereIn is then×n identity matrix and� 0 (� 0) denotes

positive (semi-) definiteness. This can be seen as follows: the inequality bounds the top

singular value by1 since it implies for all vectorsx ∈ Rn:

xT(In − AAT)x ≥ 0

⇒ xTAATx ≤ xTx

61

Therefore this statement holds forν = ν1(AA
T). Defineλ = λ1(AA

T). Then,

νTAATν ≤ νTν

⇒ νTλν ≤ 1

⇒ σ2
1(A) ≤ 1

where the last step follows from the fact thatνTν = 1 andσ2
1(M) = λ1(MMT) for

any square matrixM . The existence of this constraint also proves the convexity of the

σ1 ≤ 1 region. This condition issufficientbut notnecessaryfor stability, since a matrix

that violates this condition may still be stable.

A follow-up to this work by the same authors [63], which we will call LB-2, attempts

to overcome the conservativeness of LB-1 by approximating the Lyapunov inequalities

P −APAT � 0, P � 0 with the inequalitiesP −APAT− δIn � 0, P − δIn � 0, δ > 0.

These inequalities hold iff the spectral radius is less than1.2 However, the approximation

is achieved only at the cost of inducing a nonlinear distortion of the objective function by

a problem-dependent reweighting matrix involvingP , which is a variable to be optimized.

In our experiments, this causes LB-2 to perform worse than LB-1 (for anyδ) in terms of

the state sequence reconstruction error, even while obtaining solutions outside the feasi-

ble region of LB-1. Consequently, we focus on LB-1 in our conceptual and qualitative

comparisons as it is the strongest baseline available. However, LB-2 is more scalable than

LB-1, so quantitative results are presented for both.

To summarize the distinction between LB-1 and LB-2: it is hard to have both the right

objective function (reconstruction error) and the right feasible region (the set of stable

matrices). LB-1 optimizes the right objective but over the wrong feasible region (the set

of matrices withσ1 ≤ 1). LB-2 has a feasible region close to the right one, but at the cost

of distorting its objective function to an extent that it fares worse than LB-1 in nearly all

cases.

2For a proof sketch, see [32] pg. 410.

62

5.3 The Algorithm

The overall algorithm we propose is quite simple. We first formulate the dynamics ma-

trix learning problem as a QP with a feasible set that includes the set of stable dynamics

matrices. Then, if the unconstrained solution is unstable, we demonstrate how unstable

solutions can be used togenerate linear constraintsthat are added to restrict the feasible

set of the QP appropriately. The QP is then re-solved and the constraint generation loop

is repeated until we reach a stable solution. As a final step, the solution is refined to be as

close as possible to the unconstrained-objective-minimizing estimate while remaining sta-

ble. The overall algorithm is illustrated in Figure5.1(A). Note that the linear constraints

can eliminate subsets of the set of stable matrices from the solution space, so the final

solution is not necessarily the optimal one. However, with respect to LB-1and LB-2, our

method optimizes the right objective (unlike LB-2) over a less conservative feasible region

which includes some stable matrices withσ1 > 1 (unlike LB-1). Optimizing over the right

feasible region (spectral radius≤ 1) is hard, for reasons we will see in Section5.3.2.

We now elaborate on the different steps of the algorithm, namely how to formulate the

objective (Section5.3.1), generate constraints (Section5.3.3), compute a stable solution

(Section5.3.4) and then refine it (Section5.3.5).

5.3.1 Formulating the Objective

Assume the notation and formulations of Chapter3. In subspace ID as well as in the M-

step of an iteration of EM, it is possible to write the objective function forÂ as a quadratic

function. For subspace ID we define a quadratic objective function:

Â = arg min
A

∥∥∥AX̃i − X̃i+1

∥∥∥2

F

= arg min
A

{
tr

[(
AX̃i − X̃i+1

)T (
AX̃i − X̃i+1

)]}
= arg min

A

{
tr
(
AX̃iX̃

T
i A

T
)
− 2tr

(
X̃iX̃

T
i+1A

)
+ tr

(
X̃T

i+1X̃i+1

)}
= arg min

a

{
aTPa− 2 qTa+ r

}
(5.1a)

63

wherea ∈ Rn2×1, q ∈ Rn2×1, P ∈ Rn2×n2
andr ∈ R are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T (5.1b)

P = In ⊗
(
X̃iX̃

T
i

)
(5.1c)

q = vec(X̃iX̃
T
i+1) (5.1d)

r = tr
(
X̃T

i+1X̃i+1

)
(5.1e)

In is then × n identity matrix and⊗ denotes the Kronecker product. Note thatP is a

symmetric positive semi-definite matrix and the objective function in Equation (5.1a) is a

quadratic function ofa. For EM, we can use a similar quadratic objective function:

Â = arg min
a

{
aTPa− 2 qTa

}
(5.2a)

wherea ∈ Rn2×1, q ∈ Rn2×1 andP ∈ Rn2×n2
are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T (5.2b)

P = In ⊗

(
T∑

t=2

Pt

)
(5.2c)

q = vec

(
T∑

t=2

Pt−1,t

)
(5.2d)

Here,Pt andPt−1,t are taken directly from the E-step of EM.

5.3.2 Convexity

The feasible set of the quadratic objective function is the space of alln × n matrices,

regardless of their stability. When its solution yields an unstable matrix, the spectral radius

of Â is greater than1. Ideally we want to constrain the solution space to the set of stable

matrices, i.e. theset of matrices with spectral radius at most one(which we callSλ).

However, it is not possible to formulate a convex optimization routine that optimizes over

this set because of the shape ofSλ. Consider the class of2 × 2 matrices [66]:Eα,β =

[0.3 α ; β 0.3]. The matricesE10,0 andE0,10 are stable withλ1 = 0.3, but their convex

64

Afinal

LB-1A

generated
constraint

A

S
A^

S
unstable
matrices

stable
matrices Rn 2

*

*

λ

σ

α
−10 0 10

10

0

10

unstable
matrices

(stable
matrices)

-

S

S

λ

σ
β

A. B.

Figure5.1: (A): Conceptual depiction of the space ofn×nmatrices. The region of stability

(Sλ) is non-convex while the smaller region of matrices withσ1 ≤ 1 (Sσ) is convex. The

elliptical contours indicate level sets of the quadratic objective function of the QP.Â is

the unconstrained least-squares solution to this objective.ALB-1 is the solution found by

LB-1 [2]. One iteration of constraint generation yields the constraint indicated by the

line labeled ‘generated constraint’, and (in this case) leads to a stable solutionA∗. The

final step of our algorithm improves on this solution by interpolatingA∗ with the previous

solution (in this case,̂A) to obtainA∗
final. (B): The actual stable and unstable regions for

the space of2 × 2 matricesEα,β = [0.3 α ; β 0.3], with α, β ∈ [−10, 10]. Constraint

generation is able to learn a nearly optimal model from a noisy state sequence of length7

simulated fromE0,10, with better state reconstruction error than either LB-1 or LB-2.

combinationγE10,0 + (1 − γ)E0,10 is unstable for (e.g.)γ = 0.5 (Figure5.1(B)). This

shows that the set of stable matrices is non-convex forn = 2, and in fact this is true

for all n > 1. The problem of optimizing over this set is hence a difficult non-convex

optimization routine. We turn instead to the largestsingular value, which is a closely

related quantity since

σmin(Â) ≤ |λi(Â)| ≤ σmax(Â) ∀i = 1, . . . , n [32]

Therefore every unstable matrix has a singular value greater than one, but the converse is

not necessarily true. Moreover, the set of matrices withσ1 ≤ 1 is convex. To see this, note

65

that for any square matrixM ,

σ1(M) ≡ max
u,v:‖u‖2=1,‖v‖2=1

uTMv.

Therefore, ifσ1(M1) ≤ 1 andσ1(M2) ≤ 1, then for all convex combinations,

σ1(γM1 + (1− γ)M2) = max
u,v:‖u‖2=1,‖v‖2=1

γuTM1v + (1− γ)uTM2v ≤ 1.

Figure5.1(A) conceptually depicts the non-convex region of stabilitySλ and the convex

regionSσ with σ1 ≤ 1 in the space of alln× n matrices for some fixedn. The difference

betweenSσ andSλ can be significant. Figure5.1(B) depicts these regions forEα,β with

α, β ∈ [−10, 10]. The stable matricesE10,0 andE0,10 reside at the edges of the figure. Our

algorithm is designed to mitigate the difference betweenSλ andSσ by stopping before it

reachesSσ. While one might worry that the difference is too severe to mitigate this way,

and results do vary based on the instance used, our experiments below will show that our

constraint generation algorithm described below is able to learn a nearly optimal model

from a noisy state sequence ofτ = 7 simulated fromE0,10, with better state reconstruction

error than LB-1 and LB-2.

5.3.3 Generating Constraints

We now describe how to generate convex constraints on the setSσ. The basic idea is to

use the unstable solution̂A along with properties of matrices in the setSσ to infer a linear

constraint between̂A andSσ. Assume that

Â = ŨΣ̃Ṽ T

by SVD, whereŨ = [ũi]
n
i=1, Ṽ = [ṽi]

n
i=1 andΣ̃ = diag{̃σ1, . . . , σ̃n}. Then:

Â = ŨΣ̃Ṽ T ⇒ Σ̃ = ŨTÂṼ ⇒ σ̃1(Â) = ũT
1 Âṽ1 = tr(ũT

1 Âṽ1) (5.3)

66

Therefore,instability of Â implies that:

σ̃1 > 1⇒ tr
(
ũT

1 Âṽ1

)
> 1⇒ tr

(
ṽ1ũ

T
1 Â
)
> 1⇒ gTâ > 1 (5.4)

Here g = vec(̃u1ṽ
T
1). Since equation (5.4) arises from an unstable solution of equa-

tion (5.1a),g is can be interpreted as a hyperplane separatingâ from the space of matrices

with σ1 ≤ 1. In fact, the hyperplane istangentto §σ. We use the negation of equation (5.4)

as a constraint:

gTâ ≤ 1 (5.5)

5.3.4 Computing the Solution

Given the above mechanism for generating convex constraints on the setSσ, aconstraint

generation-basedconvex optimization algorithm immediately suggests itself. The overall

quadratic program can be stated as:

minimize aTPa− 2 qTa+ r

subject to Ga ≤ h
(5.6)

with a, P , q andr as defined in Eqs. (5.1e).{G, h} define the set of constraints, and are

initially empty. The QP is invoked repeatedly until the stable region, i.e.Sλ, is reached.

At each iteration, we calculate a linear constraint of the form in Eq. (5.5), add the corre-

spondinggT as a row inG, and augment theh vector with a1 at the end. Note that we will

almost always stopbeforereaching the feasible regionSσ.

5.3.5 Refinement

Once a stable matrix is obtained, it is possible to refine this solution. We know that the

last constraint caused our solution to cross the boundary ofSλ, so we interpolate between

the last solution and the previous iteration’s solution using binary search to look for a

boundary of the stable region, in order to obtain a better objective value while remaining

stable. This results in a stable matrix with top eigenvalue equal to1. In principle, we

67

could attempt to interpolate between any stable solution and any one of the unstable so-

lutions from previous iterations. However, the stable region can be highly complex, and

there may be several folds and boundaries of the stable region in the interpolated area. In

our experiments (not shown), interpolating from the Lacy-Bernstein solution to the last

unstable solution yielded worse results. We also tried other interpolation and constraint-

relaxation methods such as: interpolating from the least squares solution to the first stable

solution, dropping constraints added earlier in the constraint-generation process, and ex-

panding the constrained set by multiplying theh vector by a constant greater than one. All

these methods yielded worse results overall than the algorithm presented here.

5.4 Experiments

For learning the dynamics matrix, we implemented EM, subspace identification, constraint

generation (usingquadprog), LB-1 [2] and LB-2 [63] (using CVXwith SeDuMi) in Mat-

lab on a3.2 GHz Pentium with2 GB RAM. Note that the algorithms that constrain the

solution to be stable give a different result from the basic EM and and subspace ID algo-

rithms only in situations when the unconstrainedÂ is unstable. However, LDSs learned

in scarce-data scenarios are unstable for almost any domain, and some domains lead to

unstable models up to the limit of available data (e.g. thesteam dynamic textures in

Section5.4.1). The goals of our experiments are to: (1) examine the state evolution and

simulated observations of models learned using constraint generation, and compare them

to previous work on learning stable dynamical systems; and (2) compare the algorithms

in terms of computational efficiency. We apply these algorithms to learning dynamic tex-

tures from the vision domain (Section5.4.1), modeling over-the-counter (OTC) drug sales

counts (Section5.4.3) and sunspot numbers (Section5.4.4).

5.4.1 Stable Dynamic Textures

Dynamic textures in vision can intuitively be described as models for sequences of images

that exhibit some form of low-dimensional structure and recurrent (though not necessarily

68

Least Squares LB-1 Constraint Generation

A.

B.

C.

−2

0

2
x 10

4

0 500 1000 0 500 1000

t =100 t =200 t =400 t =800

0 500 1000

t =100 t =200 t =400 t =800

t t t

−1

0

1

st
at

e
ev

ol
ut

io
n

Figure5.2: Dynamic textures. A. Samples from the originalsteam sequence and the

fountain sequence. B. State evolution of synthesized sequences over1000 frames

(steam top, fountain bottom). The least squares solutions display instability as time

progresses. The solutions obtained using LB-1 remain stable for the full1000 frame im-

age sequence. The constraint generation solutions, however, yield state sequences that

are stable over the full1000 frame image sequence without significant damping. C. Sam-

ples drawn from a least squares synthesized sequences (top), and samples drawn from a

constraint generation synthesized sequence (bottom). The constraint generation synthe-

sizedsteam sequence is qualitatively better looking than thesteam sequence gener-

ated by LB-1, although there is little qualitative difference between the two synthesized

fountain sequences.

repeating) characteristics, e.g. fixed-background videos of rising smoke or flowing water.

Treating each frame of a video as an observation vector of pixel valuesyt, we learned

69

CG LB-1 LB-1∗ LB-2 CG LB-1 LB-1∗ LB-2

steam (n = 10) fountain (n = 10)

|λ1| 1.000 0.993 0.993 1.000 0.999 0.987 0.987 0.997

σ1 1.036 1.000 1.000 1.034 1.051 1.000 1.000 1.054

ex(%) 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0

time 0.45 95.87 3.77 0.50 0.15 15.43 1.09 0.49

steam (n = 20) fountain (n = 20)

|λ1| 0.999 — 0.990 0.999 0.999 — 0.988 0.996

σ1 1.037 — 1.000 1.062 1.054 — 1.000 1.056

ex(%) 58.4 — 154.7 294.8 1.2 — 5.0 22.3

time 2.37 — 1259.6 33.55 1.63 — 159.85 5.13

steam (n = 30) fountain (n = 30)

|λ1| 1.000 — 0.988 1.000 1.000 — 0.993 0.998

σ1 1.054 — 1.000 1.130 1.030 — 1.000 1.179

ex(%) 63.0 — 341.3 631.5 13.3 — 14.9 104.8

time 8.72 — 23978.9 62.44 12.68 — 5038.94 48.55

steam (n = 40) fountain (n = 40)

|λ1| 1.000 — 0.989 1.000 1.000 — 0.991 1.000

σ1 1.120 — 1.000 1.128 1.034 — 1.000 1.172

ex(%) 20.24 — 282.7 768.5 3.3 — 4.8 21.5

time 5.85 — 79516.98 289.79 61.9 — 43457.77 239.53

Table 5.1: Quantitative results on the dynamic textures data for different numbers of states

n. CG is our algorithm, LB-1and LB-2 are competing algorithms, and LB-1∗ is a simula-

tion of LB-1 using our algorithm by generating constraints until we reachSσ, since LB-1

failed forn > 10 due to memory limits.ex is percent difference in squared reconstruction

error. Constraint generation, in all cases, has lower error and faster runtime.

70

ru
nn

in
g

tim
e

(s
)

number of latent dimensions

number of latent dimensions

%
 d

ec
re

as
e

in
 o

bj
ec

tiv
e

(lo
w

er
 is

 b
et

te
r)

ru
nn

in
g

tim
e

(s
)

number of latent dimensions

number of latent dimensions

%
 d

ec
re

as
e

in
 o

bj
ec

tiv
e

(lo
w

er
 is

 b
et

te
r)

A. B.

C. D.

Figure 5.3: Bar graphs illustrating decreases in objective function value relative to the

least squares solution (A,B) and the running times (C,D) for different stable LDS learning

algorithms on thefountain(A,C) and steam(B,D) textures respectively, based on the

corresponding columns of Table5.1.

dynamictexture models of two video sequences: thesteam sequence, composed of120×
170 pixel images, and thefountain sequence, composed of150 × 90 pixel images,

both of which originated from the MIT temporal texture database (Figure5.2(A)). We use

parametersτ = 80, n = 15, andd = 10. Note that, while the observations are the raw

pixel values, the underlying state sequence we learn has noa priori interpretation.

An LDS model of a dynamic texture maysynthesizean “infinitely” long sequence of

images by driving the model with zero mean Gaussian noise. Each of our two models uses

an80 frame training sequence to generate1000 sequential images in this way. To better

visualize the difference between image sequences generated by least-squares, LB-1, and

71

constraint generation, the evolution of each method’s state is plotted over the course of the

synthesized sequences (Figure5.2(B)). Sequences generated by the least squares models

appear to be unstable, and this was in fact the case; both thesteam and thefountain

sequences resulted in unstable dynamics matrices. Conversely, the constrained subspace

identification algorithms all produced well-behaved sequences of states and stable dynam-

ics matrices (Table5.1), although constraint generation demonstrates the fastest runtime,

best scalability, and lowest error of any stability-enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares

(Figure5.2(C)) indicates the effect of instability in synthesized sequences generated from

dynamic texture models. While the unstable least-squares model demonstrates a dramatic

and unrealistic increase in image contrast over time, the constraint generation model con-

tinues to generate qualitatively reasonable images. Qualitative comparisons between con-

straint generation and LB-1 indicate that constraint generation learns models that generate

more natural-looking video sequences3 than LB-1.

Table5.1demonstrates that constraint generation always has the lowest error as well as

the fastest runtime. The running time of constraint generation depends on the number of

constraints needed to reach a stable solution. Note that LB-1 is more efficient and scalable

when simulated using constraint generation (by adding constraints untilSσ is reached)

than it is in its original SDP formulation.

Figure 5.3 shows bar graphs comparing reconstruction errors and running times of

these algorithms, based on columns of Table5.1, illustrating the large difference in effi-

ciency and accuracy between constraint generation and competing methods.

5.4.2 Prediction Accuracy on Robot Sensor Data

Another important measure of accuracy of dynamic models is their performance on short-

term and long-term prediction. This problem was addressed in the context of stable LDS

modeling in Byron Boots’ CMU Masters thesis [3], which uses the techniques described

3See videos at http://www.select.cs.cmu.edu/projects/stableLDS

72

Environment

Path

Range Data

Robot

A. B.The Robot

−85

−80

−75

−70

−65

−60

Pr
ed

ic
tio

n
Lo

g-
Li

ke
lih

oo
d

5004003002001000
Prediction Horizon

Unstable

LB-1
LB-2

CG
E.

Camera ImageC. D.

Figure5.4: Prediction accuracy on Robot Sensory Data (from Boots (2009) [3]).A. The

mobile robot with camera and laser sensors. B. The environment and robot path. C. An

image from the robot camera. D. A depiction of laser range scan data (green dots on

environment surfaces). E. Predictive log-likelihoods from: the unstable model (Unstable),

constraint generation (CG), and the two other LDS stabilizing algorithms, LB-1 and LB-2.

Bars at every 20 timesteps denote variance in the results. CG provides the best stable short

term predictions, nearly mirroring the unstable model, while all three stabilized models do

better than the unstable model in the long term.

in this chapter for models with exogenous control inputs, and also combines the constraint

generation algorithm with EM (Section3.3.1) in the way indicated earlier in this chapter.

The experiment and result is summarized in this section since the original document is

difficult to access outside CMU. Vision data and laser range scans were collected from a

Point Grey Bumblebee2 stereo camera and a SICK laser rangefinder mounted on a Botrics

O-bot d100 mobile robot platform (Figure5.4(A)) circling an obstacle in an indoor envi-

ronment(Figure5.4(B)). After collecting video and laser data (Figure5.4(C,D)), the pixel

and range reading data were vectorized at each timestep and concatenated. After centering

and scaling to align the variances, and SVD to reduce dimensionality, a sequence of 2000

10-dimensional processed observations was obtained.

For the experiment, 15 sequences of 200 frames were used to learn models of the

environment via EM initialized by subspace ID; of these models 10 were unstable. The

73

unstable model was stabilized using constraint generation, LB-1 and LB-2. Stabilization

was performed in the last M-step of EM (doing it in every EM iteration is more expensive

and did not improve performance). To test predictive power, filtering was performed for 20

frames using the original model, and from there on, prediction was performed for different

extents ranging from 1 to 500, from the original unstable model and the three stabilized

models. This filtering and prediction was repeated on 1500 separate subsequences.

The resulting plot of prediction loglikelihood over different prediction extents (Fig-

ure 5.4(E)) shows that the model stabilized using constraint generation has the higher

prediction loglikelihood of the unstable model in the short term (1-120 timesteps), while

in the long term all the stable models have a higher prediction loglikelihood than the un-

stable model, whose score declines steadily while the stable models’ score remains higher

consistently.

5.4.3 Stable Baseline Models for Biosurveillance

We examine daily counts of OTC drug sales in pharmacies, obtained from the National

Data Retail Monitor (NDRM) collection [67]. The counts are divided into23 different

categories and are tracked separately for each zipcode in the country. We focus on zipcodes

from a particular American city. The data exhibits7-day periodicity due to differential

buying patterns during weekdays and weekends. We isolate a60-day subsequence where

the data dynamics remain relatively stationary, and attempt to learn LDS parameters to be

able to simulate sequences of baseline values for use in detecting anomalies. In principle,

more accurate baseline models should lead to better anomaly detection.

We perform two experiments on different aggregations of the OTC data, with parame-

ter valuesn = 7, d = 7 andτ = 14. Figure5.5(A) plots22 different drug categories

aggregated over all zipcodes, and Figure5.5(B) plots a single drug category (cough/cold)

in 29 different zipcodes separately. In both cases, constraint generation is able to use very

little training data to learn a stable model that captures the periodicity in the data, while

the least squares model is unstable and its predictions diverge over time. LB-1 learns a

model that is stable but overconstrained, and the simulated observations quickly drift from

74

thecorrect magnitudes.

0

300
Multi-drug sales counts

30 600

Multi-zipcode sales counts

30 600

Sunspot numbers

100 2000

0

300

0

300

0

300

0

400

0

400

0

400

0

400

0

1500

0

1500

0

1500

0

1500

A. B. C.

Tr
ai

ni
ng

D
at

a
C

on
st

ra
in

t
G

en
er

at
io

n
Le

as
t

Sq
ua

re
s

LB
-1

Figure5.5: (A): 60 days of data for22 drug categories aggregated over all zipcodes in the

city. (B): 60 days of data for a single drug category (cough/cold) for all29 zipcodes in

the city. (C): Sunspot numbers for200 years separately for each of the12 months. The

training data (top), simulated output from constraint generation, output from the unstable

least squares model, and output from the over-damped LB-1 model (bottom).

5.4.4 Modeling Sunspot Numbers

We compared least squares and constraint generation on learning LDS models for the

sunspot data discussed earlier in Section3.3.2. We use parameter settingsn = 7, d =

18, τ = 50. Figure5.5(C) represents a data-poor training scenario where we train a least-

squares model on18 timesteps, yielding an unstable model whose simulated observations

increase in amplitude steadily over time. Again, constraint generation is able to use very

little training data to learn a stable model that seems to capture the periodicity in the data

as well as the magnitude, while the least squares model is unstable. The model learned by

LB-1 attenuates more noticeably, capturing the periodicity to a smaller extent. Quantitative

75

results on both these domains exhibit similar trends as those in Table5.1.

5.5 Discussion

We have introduced a novel method for learning stable linear dynamical systems. Our

constraint generation algorithm is more powerful than previous methods in the sense of

optimizing over a larger set of stable matrices with a suitable objective function. In prac-

tice, the benefits of stability guarantees are readily noticeable, especially when the training

data is limited. This connection between stability and amount of training data is impor-

tant in practice, since time series data is often expensive to collect in large quantities,

especially for phenomena with long periods in domains like physics or astronomy. The

constraint generation approach also has the benefit of being faster than previous methods

in nearly all of our experiments. Stability could also be of advantage in planning ap-

plications. Subspace ID, and its stable variant introduced here, provide a different way of

looking at LVM parameter learning, one that is based on optimizing thepredictivecapabil-

ities of the model. Depending on the number of observations stacked in the Hankel matrix,

we could optimize for short-term or long-term prediction if the data domain is expected or

known to have short or long-range periodicity. The simplicity of the matrix decomposition

approach, and its natural method for model selection by examining singular values, is also

very attractive in contrast to EM-based approaches. These factors motivate us to seek an

analogous learning method for HMM-type models as well, to realize these benefits in the

discrete LVM domain. In the next chapter we propose a variant of HMMs, along with a

matrix-decomposition-based learning algorithm for it that attains this goal.

76

Chapter 6

Reduced-Rank Hidden Markov Models

So far we have examined continuous-observation Hidden Markov Models (HMMs) [4]

and Linear Dynamical Systems (LDSs) [28], which are two examples of latent variable

models of dynamical systems. The distributional assumptions of HMMs and LDSs result

in important differences in the evolution of their belief over time. The discrete state of

HMMs is good for modeling systems with mutually exclusive states that can have com-

pletely different observation signatures. The predictive distribution over observations is

allowed to be non-log-concave when predicting or simulating the future, leading to what

we callcompetitive inhibitionbetween states (see Figure6.4below for an example). Com-

petitive inhibition denotes the ability of a model’s predictive distribution to place proba-

bility mass on observations while disallowing mixtures of those observations. Conversely,

the Gaussian predictive distribution over observations in LDSs is log-concave, and thus

does not exhibit competitive inhibition. However, LDSs naturally modelsmooth state

evolution, which HMMs are particularly bad at. The dichotomy between the two models

hinders our ability to compactly model systems that exhibitboth competitive inhibition

and smooth state evolution. In this chapter we present theReduced-Rank Hidden Markov

Model (RR-HMM), a dynamical system model which can perform smooth state evolution

as well as competitive inhibition. Intuitively the RR-HMM assumes that the dynamical

system evolves smoothly along a low-dimensional subspace in a large discrete state space.

We discuss theoretical connections to previous work, propose a learning algorithm with

77

finite-sample performance guarantees, and demonstrate results on high-dimensional real-

world sequential data.

6.1 Introduction

HMMs can approximate smooth state evolution by tiling the state space with a very large

number of low-observation-variance discrete states with a specific transition structure.

However, inference and learning in such a model is highly inefficient due to the large

number of parameters, and due to the fact that existing HMM learning algorithms, such

as Expectation Maximization (EM) [4], are prone to local minima. More sophisticated

EM-based algorithms for learning HMMs that avoid local minima, such as STACS (Chap-

ter4), help to some extent. However they are still heuristics that do not offer any theoretical

performance guarantees, and cannot learn very large-state-space models as efficiently or

accurately as we would like (on the other hand, STACS does learn apositive realization

of HMM parameters unlike the spectral method we describe here, but this does not hinder

us from performing inference and prediction using the RR-HMM parameters we obtain).

RR-HMMs allow us to reap many of the benefits of large-state-space HMMs without in-

curring the associated inefficiency during inference and learning. Indeed, we show that

all inference operations in the RR-HMM can be carried out in the low-dimensional space

where the dynamics evolve, decoupling their computational cost from the number of hid-

den states. This makesrank-k RR-HMMs (with any number of states) as computationally

efficient ask-stateHMMs, but much more expressive. Figure6.1(A) shows an example

of observations from a4-state dynamical system which cannot be represented by a3-state

HMM Figure6.1(B), but is accurately modeled by a rank-3RR-HMM (Figure6.1(C)) that

can be learned using a single invocation of the algorithm described here. A4-state HMM

can be learned for this data (Figure6.1(D)). Traditional methods for learning this HMM,

such as EM, involves performing multiple restarts to escape local minima.

Though the RR-HMM is in itself novel, its low-dimensionalRk representation is a spe-

cial case of several existing models such as Predictive State Representations [68], Observ-

able Operator Models [69], generalized HMMs [70] and multiplicity automata [71,72],

78

c

b

a
Training Data from 4-state HMM

time

ob
se

rv
at

io
n

A.

c

b

a
Estimated 3-state HMM

time

c

b

a
Estimated rank-3 RR-HMM

time

ob
se

rv
at

io
n

B.

C. D.

c

b

a

time

Estimated 4-state HMM

Figure6.1: (A) Observations from a dynamical system with 4 discrete states and 3 discrete

observations, two of whose states emit the observation ‘c’ and can only be distinguished

by the underlying dynamics. (B) 3-state HMMs learned using EM with multiple restarts

cannot represent this model, as evinced by simulations from this model. (C) A rank-3

RR-HMM estimated using a single run of the learning algorithm described in this chapter

represents this 4-state model accurately (as seen from simulations), as does (D) a 4-state

HMM learned using EM, though the latter needs multiple restarts to discover the overlap-

ping states and avoid local minima.

79

and is also related to the representation of LDSs learned using Subspace Identification [27].

These and other related models and algorithms are discussed further in Section6.4.

To learn RR-HMMs from data, we adapt and extend a recently proposed spectral learn-

ing algorithm by Hsu, Kakade and Zhang [12] (henceforth referred to as HKZ) that learns

observable representationsof HMMs using matrix decomposition and regression on em-

pirically estimated observation probability matrices of past and future observations. An

observable representation of an HMM allows us to model sequences with a series of oper-

ators without knowing the underlying stochastic transition and observation matrices. The

HKZ algorithm is free of local optima and asymptotically unbiased, with finite-sample

bounds onL1 error in joint probability estimates and on KL-divergence of conditional

probability estimates from the resulting model. However, the original algorithm and its

bounds assume (1) that the transition model is full-rank and (2) that single observations

are informative about the entire latent state, i.e.1-step observability. We generalize the

HKZ bounds to the low-rank transition matrix case and derive tighter bounds that de-

pend onk instead ofm, allowing us to learn rank-kRR-HMMs of arbitrarily largem in

O(Nk2) time, whereN is the number of samples. We also describe and test a method

for circumventing the1-step observability condition by combining observations to make

them more informative. Furthermore, in the Appendix we also provide consistency results

which show that the learning algorithm in fact can learn PSRs (more details on this are

available in [73], though our error bounds don’t yet generalize to these models.

Experiments show that our learning algorithm can recover the underlying RR-HMM in

a variety of synthetic domains. We also demonstrate that RR-HMMs are able to compactly

model smooth evolutionandcompetitive inhibition in a clock pendulum video, as well as

in real-world mobile robot vision data captured in an office building. Robot vision data

(and, in fact, most real-world multivariate time series data) exhibits smoothly evolving

dynamics requiring multimodal predictive beliefs, for which RR-HMMs are particularly

suited. We compare performance of RR-HMMs to LDSs and HMMs on simulation and

prediction tasks. Proofs and some other details are in the Appendix.

80

A. B.

Rk

Rm

Rn

R

S

O
simplex

simplex

xt

l t

ht

.

.

.

x t

ht ht+1

xt+1

ht-1

xt-1

l t lt+1lt-1

C.

0.4

0.5

0.6

0.4 0.5 0.6

HMM
(m=3)

 RR-HMM
(m=10,rank 3)

Pr(observation 1)

Pr
(o

bs
er

va
tio

n
2)

Figure6.2: (A) The graphical model representation of an RR-HMM.lt denotes thek-

dimensional state vector,ht them-dimensional discrete state, andxt the discrete observa-

tion. The distributions overht andlt+1 are deterministic functions oflt. (B) An illustration

of different RR-HMM parameters and the spaces and random variables they act on. (C)

Projection of sets of predictive distributions of a rank3 RR-HMM with 10 states, and a

3-state full-rank HMM with similar parameters.

6.1.1 Definitions

Assume the HMM notation introduced in Chapter2, assumeT has rankk and letT = RS

whereR ∈ Rm×k andS ∈ Rk×m. This implies that the dynamics of the system can

be expressed inRk rather thanRm. By convention, we think ofS as projecting them-

dimensional state distribution vector to ak-dimensional state vector, andR as expanding

this low-dimensional state back to anm-dimensional state distribution vector while prop-

agating it forward in time. One possible choice forR andS is to use anyk independent

columns ofT as the columns ofR, and let the columns ofS contain the coefficients re-

quired to reconstructT fromR, though other choices are possible (e.g. using SVD). Also

assume for now thatm ≤ n (we relax this assumption in Section6.2.4). We denote the

k-dimensional projection of the hidden state vector~ht as~lt, which is simply a vector of

real numbers rather than a stochastic vector. We assume the initial state distribution lies in

the low dimensional space as well, i.e.~π = R~πl for some vector~πl ∈ Rk. Figure6.2(A)

illustrates the graphical model corresponding to an RR-HMM. Figure6.2(B) illustrates

some of the different RR-HMM parameters and the spaces they act on.

To see how the probability of a sequence can be computed using these parameters, first

81

recall the definition ofAx ∈ Rm×m according to equation (2.1) and the fact thatT = RS:

Ax = RS diag(Ox,·)

and defineWx ∈ Rk×k

Wx = S diag(Ox,·)R

Also letW =
∑

xWx = SR. Equation (2.2) shows how to write the joint probability of

a sequencex1, ..., xt using{Ax}. With the above definitions, the joint probability can also

be written using{Wx} as well:

Pr[x1, ..., xt] = ~1T
mRS diag(Oxt,·)RS diag(Oxt−1,·)R · · ·S diag(Ox1,·)~π (from equation (2.2))

= ~1T
mR (S diag(Oxt,·)R)

(
S diag(Oxt−1,·)R

)
· · · (S diag(Ox1,·)R)S~π

= ~1T
mRWxt . . .Wx1~πl (by definition ofWx, ~πl) (6.1)

The latter parametrization casts a rank-kRR-HMM as ak-dimensional PSR or trans-

formed PSR [74]. Inference can be carried out inO(Nk2) time in this representation.

However, since every HMM is trivially a PSR, this leads to the question of how expressive

rank-kRR-HMMs are in comparison tok-state full-rank HMMs. The following example

is instructive.

6.1.2 Expressivity of RR-HMMs

We describe a rank-kRR-HMM whose set of possible predictive distributions is easy to

visualize and describe. Consider the following rank3 RR-HMM with 10 states and4

observations. The observation probabilities in each state are of the form

Oi,· = [piqi pi(1− qi) (1− pi)qi (1− pi)(1− qi)]

for some0 ≤ pi, qi ≤ 1, which can be interpreted as4 discrete observations, factored as

two binary components which are independent given the state.T andpi, qi are chosen to

place the vertices of the set of possible predictive distributions on evenly spaced points

82

alonga circle in(p, q)-space:

Tij = (1/2m) [2 + sin (2πi/m) sin (2πj/m) + cos (2πi/m) cos (2πj/m)]

pi = [sin(2πi/m) + 1] /2

qi = [cos(2πi/m) + 1] /2

We plot the marginal probability of each component of the observation, ranging across all

achievable values of the latent state vector for them = 10 case (Figure6.2(C)), yielding

a 10-sided polygon as the projection of the set of possible predictive distributions. These

distributions are the columns ofTTO. We also plot the corresponding marginals for the

m = 3 full-rank HMM case to yield a triangular set. More generally, from ak-state HMM,

we can get at most ak-sided polygon for the set of possible predictive distributions.

The above example illustrates that rank-kRR-HMMs with m states can model sets

of predictive distributions which full-rank HMMs with less thanm states cannot express.

However, as we shall see, inference in rank-kRR-HMMs of arbitrarym is as efficient as

inference ink-state full-rank HMMs. This implies that the additional degrees of freedom

in the RR-HMM’s low-dimensional parameters and state vectors buy it considerable ex-

pressive power. Since RR-HMMs are also related to PSRs as pointed out in the previous

section, and since our learning algorithm will be shown to beconsistentfor estimating

PSRs (though we have finite-sample guarantees only for the RR-HMM case), it is also

instructive to examine the expressivity of PSRs in general. We refer the reader to Jaeger

(2000) [69] and James et. al. (2004) [75] for more on this.

6.2 Learning Reduced-Rank HMMs

In a full-rank HMM, the maximum likelihood solution for the parameters{T,O} can be

found through iterative techniques such as expectation maximization (EM) [15]. EM, how-

ever, is prone to local optima and does not address the model selection problem. STACS

is better but still not guaranteed to return anything close to optimal as data increases, and

is slow beyond a certain state space magnitude. Moreover, in learning RR-HMMs we face

83

the additional challenge of learning the factors of its low-rank transition matrix. We could

use EM to estimateT followed by (or combined with) matrix factorization algorithms

such as Singular Value Decomposition (SVD) [32] or Non-negative Matrix Factorization

(NMF) [76]. This approach has several drawbacks. For example, if the noisy estimate of

a low-rank transition matrix is not low-rank itself, SVD could cause negative numbers to

appear in the reconstructed transition matrix. Also, algorithms for NMF are only locally

optimal, and NMF is overly restrictive in that it constrains its factor matrices to be non-

negative, which is unnecessary for our application since low-rank transition matrices may

have negative numbers in their factorsR andS.

An alternative approach, which we adopt, is to learn an asymptotically unbiased ob-

servable representation of an RR-HMM directly using SVD of a probability matrix relating

past and future observations. This idea has roots in subspace identification [27,29] and

multiplicity automata [71,72,70] as well as the PSR/OOM literature [69,77] and was re-

cently formulated in a paper by Hsu, Kakade and Zhang [12] for full-rank HMMs. We use

their algorithm, extending its theoretical guarantees for the low-rank HMM case where the

rank of the transition matrix T isk ≤ m. Computationally, the only difference in our base

algorithm (before Section6.2.4) is that we learn a rankk representation instead of rank

m. This allows us learn much more compact representations of possibly large-state-space

real-world HMMs, and greatly increases the applicability of the original algorithm. Even

when the underlying HMM is not low-rank, we can examine the singular values to tune the

complexity of the underlying RR-HMM, thus providing a natural method for model selec-

tion. We present the main definitions, the algorithm and its performance bounds below.

Detailed versions of the supporting proofs and lemmas can be found in the Appendix.

84

6.2.1 The Algorithm

The learning algorithm depends on the following vector and matrix quantities that com-

prise properties of single observations, pairs of observations and triples:

[P1]i = Pr[x1 = i]

[P2,1]i,j = Pr[x2 = i, x1 = j]

[P3,x,1] = Pr[x3 = i, x2 = x, x1 = j] for x = 1, . . . , n

P1 ∈ Rn is a vector,P2,1 ∈ Rn×n andP3,x,1 ∈ Rn×n are matrices. These quantities are

closely related to matrices computed in algorithms for learning OOMs [69], PSRs [77] and

LDSs using subspace identification (Subspace ID) [27]. They can be expressed in terms

of HMM parameters (for proofs see the Appendix: Lemmas8 and9 in SectionA.1.1):

~PT
1 = ~1T

mT diag(π)OT

P2,1 = OT diag(π)OT

P3,x,1 = OAxT diag(π)OT

Note thatP2,1 andP3,x,1 both contain a factor ofT and hence are both of rankk for a

rank-kRR-HMM. This property will be important for recovering an estimate of the RR-

HMM parameters from these matrices. The primary intuition is that, when projected onto

an appropriate linear subspace,P3,x,1 is linearly related toP2,1 through a product of RR-

HMM parameters. This allows us to devise an algorithm that

1. estimatesP2,1 andP3,x,1 from data,

2. projects them to an appropriate linear subspace computed using SVD,

3. uses linear regression to estimate the RR-HMM parameters (up to a similarity trans-

form) from these projections.

Specifically, the algorithm attempts to learn anobservable representationof the RR-

HMM using a matrixU ∈ Rn×k such thatUTOR is invertible. An observable representa-

tion is defined as follows.

85

Definition 1 The observable representationisdefined to be the parametersb1, b∞, {Bx}nx=1

such that:

~b1 = UTP1 (6.2a)

~b∞ = (PT
2,1U)+P1 (6.2b)

Bx = (UTP3,x,1)(U
TP2,1)

+ for x = 1, . . . , n (6.2c)

For the RR-HMM, note that the dimensionality of the parameters is determined byk, not

m: b1 ∈ Rk, b∞ ∈ Rk and∀x Bx ∈ Rk×k. Though these definitions seem arbitrary

at first sight, the observable representation of the RR-HMM is closely related to the true

parameters of the RR-HMM in the following manner (see Lemma9 in the Appendix for

the proof):

1. ~b1 = (UTOR)πl = (UTO)π,

2. ~bT∞ = 1T
mR(UTOR)−1,

3. For allx = 1, . . . , n : Bx = (UTOR)Wx(U
TOR)−1

HenceBx is a similarity transform of the RR-HMM parameter matrixWx = S diag(Ox,·)R

(which, as we saw earlier, allows us to perform RR-HMM inference), and~b1 and~b∞ are

the corresponding linear transformations of the RR-HMM initial state distribution and the

RR-HMM normalization vector. Note that(UTOR) must be invertible for these relation-

ships to hold. Together, the parameters~b1,~b∞ andBx for all x comprise the observable

representation of the RR-HMM. Our learning algorithm will estimate these parameters

from data. The algorithm for estimating rank-kRR-HMMs is equivalent to the spectral

HMM learning algorithm of HKZ [12] for learningk-state HMMs. Our relaxation of their

conditions (e.g. HKZ assume a full-rank transition matrix, without which their bounds are

vacuous), and our performance guarantees for learning rank-kRR-HMMs, show that the

algorithm learns a much larger class ofk-dimensional models than the class ofk-state

HMMs.

86

L EARN-RR-HMM(k,N) The learning algorithm takes as input the desired rankk of

the underlying RR-HMM rather than the number of statesm. Alternatively, given a sin-

gular value threshold the algorithm can choose the rank of the HMM by examining the

singular values ofP2,1 in Step 2. It assumes that we are givenN independently sampled

observation triples(x1, x2, x3) from the HMM. In practice, we can use a single long se-

quence of observations as long as we discount the bound on the number of samples based

on the mixing rate of the HMM (i.e. (1− the second eigenvalue ofT)), in which case

π must correspond to the stationary distribution of the HMM to allow estimation of~P1.

The algorithm results in anestimated observable representationof the RR-HMM, with

parameterŝb1, b̂∞, andB̂x for x = 1, . . . , n. The steps are briefly summarized here for

reference:

1. Compute empirical estimateŝP1, P̂2,1, P̂3,x,1 of ~P1, P2,1, P3,x,1 (for x = 1, ..., n).

2. Use SVD onP̂2,1 to computeÛ , the matrix of left singular vectors corresponding to

thek largest singular values.

3. Compute model parameter estimates:

(a) b̂1 = ÛTP̂1,

(b) b̂∞ = (P̂T
2,1Û)+P̂1,

(c) B̂x = ÛTP̂3,x,1(Û
TP̂2,1)

+ (for x = 1, . . . , n)

We now examine how we can perform inference in the RR-HMM using the observable

representation. For this, we will need to define theinternal state~bt. Just as the parameter
~b1 is a linear transform of the initial RR-HMM belief state,~bt is a linear transform of the

belief state of the RR-HMM at timet (Lemma10 in SectionA.1.1of the Appendix):

~bt = (UTOR)~lt(x1:t−1) = (UTO)~ht(x1:t−1)

This internal state~bt can be updated to condition on observations and evolve over time,

just as we can update~lt for RR-HMMs and~ht for regular HMMs.

87

6.2.2 Inference in the Observable Representation

Given a set of observable parameters, we can predict the probability of a sequence, update

the internal statêbt to perform filtering and predict conditional probabilities as follows (see

Lemma10 in the Appendix for proof):

• Predict sequence probability:̂Pr[x1, . . . , xt] = b̂T∞B̂xt . . . B̂x1 b̂1

• Internal state update:̂bt+1 =
bBxt
bbt

bbT
∞ bBxt

bbt

• Conditional probability ofxt givenx1:t−1: P̂r[xt | x1:t−1] =
bbT
∞ bBxt

bbtP
x
bbT
∞ bBx

bbt

Estimated parameters can, in theory, lead to negative probability estimates. These are

most harmful when they cause the normalizersb̂T∞B̂xt b̂t or
∑

x b̂
T
∞B̂xb̂t to be negative.

However, in our experiments, the latter was never negative and the former was very rarely

negative; and, using real-valued observations with KDE (as in Section6.2.6) makes neg-

ative normalizers even less likely, since in this case the normalizer is a weighted sum of

several estimated probabilities. In practice we recommend thresholding the normalizers

with a small positive number, and not trusting probability estimates for a few steps if the

normalizers fall below the threshold.

Note that the inference operations occur entirely inRk. We mentioned earlier that pa-

rameterizing RR-HMM parameters asWx for all observationsx casts it as a PSR ofk di-

mensions. In fact the learning and inference algorithms for RR-HMMs proposed here have

no dependence on the number of statesm whatsoever, though other learning algorithms

for RR-HMMs can depend onm (e.g. if they learnR andS directly). The RR-HMM

formulation is intuitively appealing due to the idea of a large discrete state space with

low-rank transitions, but this approach is also a provablyconsistent learning algorithm for

PSRsin general, with finite-sample performance guarantees for the case where the PSR

is an RR-HMM. Since PSRs are provably more expressive and compact than finite-state

HMMs [69, 75], this indicates that we can learn a more powerful class of models than

HMMs using this algorithm.

88

6.2.3 Theoretical Guarantees

The following finite sample bound on the estimated model generalizes analogous results

from HKZ to the case of low-rankT . Theorem2 bounds theL1 error in joint probabil-

ity estimates from the learned model. This bound shows the consistency of the algorithm

in learning a correct observable representation of the underlying RR-HMM, without ever

needing to recover the high-dimensional parametersR, S,O of the latent representation.

Note that our error bounds areindependentof m, the number of hidden states; instead,

they depend onk, the rank of the transition matrix, which can be much smaller thanm.

Since HKZ explicitly assumes a full-rank HMM transition matrix, and their bounds be-

come vacuous otherwise, generalizing their framework involves relaxing this condition,

generalizing the theoretical guarantees of HKZ and deriving proofs for these guarantees.

Defineσk(M) to denote thekth largest singular value of matrixM . The sample com-

plexity bounds depend polynomially on1/σk(P2,1) and1/σk(OR). The largerσk(P2,1)

is, the more well-separated are the dynamics from noise. The largerσk(OR) is, the more

informative the observation is regarding state. For both these quantities, the larger the

magnitude, the fewer samples we need to learn a good model. The bounds also depend

on a termn0(ε), which is the minimum number of observations that account for(1 − ε)
of the total probability mass, i.e. the number of “important” observations. Recall thatN

is the number of independently sampled observation triples which comprise the training

data, though as mentioned earlier we can also learn from a single long training sequence.

The theorem holds under mild conditions. Some of these are the same as (or relaxations

of) conditions in HKZ, namely that the prior~π is nonzero everywhere, and a number of

matrices of interest(R,S,O, (UTOR)) are of rank at leastk for invertibility reasons. The

other conditions are unique to the low-rank setting, namely thatS diag(~π)OT has rank at

leastk,R has at least one column whoseL2 norm is at most
√
k/m, and theL1 norm ofR

is at most1. The first of these conditions implies that the column space ofS and the row

space ofO have some degree of overlap. The other two are satisfied, in the case of HMMs,

by thinking ofR as containingk linearly independent probability distributions along its

columns (including a near-uniform column) and ofS as containing the coefficients needed

89

to obtainT from those columns. Alternatively, the conditions can be satisfied for an arbi-

traryR by scaling down entries ofR and scaling up entries ofS accordingly. However,

this increases1/σk(OR), and hence we pay a price by increasing the number of samples

needed to attain a particular error bound. See the Appendix (SectionA.1.1) for formal

statements of these conditions.

Theorem 2 [Generalization of HKZ Theorem 6] There exists a constantC > 0 such that

the following holds. Pick any0 ≤ ε, η ≤ 1 andt ≥ 1. Assume the HMM obeys Conditions

3,4,5,6 and 7. Letε = σk(OR)σk(P2,1)ε/(4t
√
k). Assume

N ≥ C · t
2

ε2
·
(

k

σk(OR)2σk(P2,1)4
+

k · n0(ε)

σk(OR)2σk(P2,1)2

)
· log(1/η)

With probability≥ 1− η, the model returned byLEARNRR-HMM(k,N) satisfies∑
x1,...,xt

|Pr[x1, . . . , xt]− P̂r[x1, . . . , xt]| ≤ ε

where the summation is over all possible hidden state sequences of lengtht.

For the proof, see the Appendix (SectionA.1.4).

6.2.4 Learning with Observation Sequences as Features

The probability matrixP2,1 relates one past timestep to one future timestep, under the as-

sumption that the vector of observation probabilities at a single step is sufficient to disam-

biguate state (n≥ m andrank(O) = m). In system identification theory, this corresponds

to assuming1-step observability[27]. This assumption is unduly restrictive for many

real-world dynamical systems of interest. More complex sufficient statistics of past and

future may need to be modeled, such as theblock Hankel matrixformulations for subspace

methods [27,29] to identify linear systems that are not1-step observable.

For RR-HMMs, this corresponds to the case wheren < m and/orrank(O) < m. Sim-

ilar to the Hankel matrix formulation, we can stack multiple observation vectors such that

90

eachaugmented observation comprises data from several, possibly consecutive, timesteps.

The observations in the augmented observation vectors are assumed to be non-overlapping,

i.e. all observations in the new observation vector at timet + 1 have larger time indices

than observations in the new observation vector at timet. This corresponds to assuming

past sequencesandfuture sequencesspanning multiple timesteps as events that character-

ize the dynamical system, causing~P1,P2,1 andP3,x,1 to be larger. Note that thex in P3,x,1

still denotes asingleobservation, whereas the other indices in~P1, P2,1 andP3,x,1 are now

associated with events. For example, if we stackn consecutive observations,P3,x,1[i, j]

equals the probability of seeing theith n-lengthsequence, followed by the single observa-

tion x, followed by thejth n-lengthsequence. Empirically estimating this matrix consists

of scanning for the appropriate subsequencesi andj separated by observation symbolx,

and normalizing to obtain the occurrence probability.

P2,1 andP3,x,1 become larger matrices if we use a larger set of events in the past and

future. However, stacking observations does not complicate thedynamics: it can be shown

that the rank ofP2,1 andP3,x,1 cannot exceedk (see SectionA.2 in the Appendix for a proof

sketch). Since our learning algorithm relies on an SVD ofP2,1, this means that augmenting

the observations does not increase the rank of the HMM we are trying to recover. Also,

sinceP3,x,1 is still an observation probability matrix with respect to asingleunstacked

observationx in the middle, the number of observable operators we need remains constant.

Our complexity bounds successfully generalize to this case, since they only rely on~P1,

P2,1 andP3,x,1 being matrices of probabilities summing to1 (for the former two) or to

Pr[x2 = x] (for the latter), as they are here.

The extension given above for learning HMMs with ambiguous observations differs

from the approach suggested by HKZ, which simply substitutes observations withover-

lapping tuples of observations (e.g.P2,1(j, i) = Pr[x3 = j2, x2 = j1, x2 = i2, x1 = i1]).

There are two potential problems with the HKZ approach. First, the number of observable

operators increases exponentially with the length of each tuple: there is one observable

operator per tuple, instead of one per observation. Second,P2,1 cannotbe decomposed

into a product of matrices that includesT , and consequently no longer has rank equal to

the rank of the HMM being modeled. Thus, the learning algorithm could require much

91

more data to recover a correct model if we use the HKZ approach.

6.2.5 Learning with Indicative and Characteristic Features

To generalize even further beyond sequences of observations, we can think about deriv-

ing higher-level features of past and future observations, which we callindicative fea-

tures and characteristic featuresrespectively, and generalizing~P1, P2,1P3,x,1 to contain

expected valuesof these features (or possibly products of features). These are analogous

to but more general than theindicative eventsandcharacteristic eventsof OOMs [69] and

suffix-historiesandtestsof PSRs [77]. These more specific formulations can be obtained

by assuming our indicative and characteristic features to beindicator variablesof some

indicative and characteristic events, causing the expected values of singleton, pairs and

triples of these features (or their products) to equal probabilities of occurrence of these

events. This leads to the current scenario where the matrices~P1, P2,1 andP3,x,1 contain

probabilities, and in fact our theoretical guarantees hold in this case. In the more general

case where we choose arbitrary indicative and characteristic features of past and future

observations which do not lead to a probabilistic interpretation of~P1, P2,1 andP3,x,1, our

error bounds do not hold as written, although there is good reason to believe that they

can be generalized. However the algorithm is still valid in the sense that we can prove

consistencyof the resulting estimates. See SectionA.4 of AppendixA.

6.2.6 Kernel Density Estimation for Continuous Observations

The default RR-HMM formulation assumes discrete observations. However, since the

model formulation converts the discrete observations intom-dimensional probability vec-

tors, and the filtering, smoothing and learning algorithms we discuss all do the same, it is

straightforward to model multivariate continuous data. Counting on our ability to perform

efficient inference and learning even in very large state spaces, we pickn points in ob-

servation space as kernels, and perform Kernel Density Estimation (KDE) to convert each

continuous datapoint into a probability vector. In our experiments we use Gaussian kernels

92

with uniform bandwidths, however any smooth kernel will suffice. The kernel centers can

be chosen by sampling, clustering or other standard methods. In our experiments below,

we use an initial subsequence of training data points as kernel centers directly. The kernel

bandwidths can be estimated from data using maximum likelihood estimation, or can be

fixed beforehand. In the limit of infinite training data, the bandwidth can shrink to zero

and the KDE gives an accurate estimate of the observation density. Our theoretical results

carry over to the KDE case with modifications described in SectionA.1.5. Essentially,

the bounds still hold for the case where we are observing stochastic vectors, though we

do not yet have additional bounds connecting this existing bound to the error in estimat-

ing probabilities of raw continuous observations. When filtering in this formulation, we

compute a vector of kernel center probabilities for each observation. We normalize this

vector and use it to generate a convex combination of observable operators, which is used

for incorporating the observation rather than any single observable operator.

This affects the learning algorithm and inference procedure as follows. Assume for

ease of notation that the training data consists ofN sets of three consecutive continuous

observation vectors each, i.e.{〈~x1,1, ~x1,2, ~x1,3〉, 〈~x2,1, ~x2,2, ~x2,3〉, . . . , 〈~xN,1, ~xN,2, ~xN,3〉},
though in practice we could be learning from a single long training sequence (or sev-

eral). Also assume for now that each observation vector contains a single raw observation,

though this technique can easily be combined with the more sophisticated sequence-based

learning and feature-based learning methods described above. We will assumen kernel

centers chosen from the training data, where theith kernel is centered at~ci, and each kernel

has a covariance matrix ofΣ. λ is a bandwidth parameter that goes to zero over time. Let

N (µ,C) denote a multivariate Gaussian distribution with mean~µ and covariance matrix

C, andPr[y | N (µ,C)] be the probability ofy under this Gaussian.

The learning algorithm begins by computingn-dimensional feature vectors〈~φj〉Nj=1,

〈~ψj〉Nj=1 and〈~ξj〉Nj=1 where

[~φj]i = Pr[~xj,1 | N (~ci,Σ)]

[~ψj]i = Pr[~xj,2 | N (~ci,Σ)]

[~ξj]i = Pr[~xj,3 | N (~ci,Σ)]

93

In addition, then-dimensional vectors〈~ζj〉Nj=1 represent the kernel probabilities of the

second observation which shrink to zero in the limit of infinite data at an appropriate rate

via the bandwidth parameterλ:

[~ζj]i = Pr[~xj,2 | N (~ci, λΣ)]

These vectors are then normalized to sum to 1 individually. Then, the vector~P1 and

matricesP2,1 andP3,x,1 (for a given~x), can be estimated as follows:

P̂1 =
1

N

N∑
j=1

~φj

P̂2,1 =
1

N

N∑
j=1

~ψj
~φT

j

Forx = c1, . . . , cn: P̂3,x,1 =
1

N

N∑
j=1

[~ζj]x~ξj~φ
T
j

Once these matrices have been estimated, the rest of the algorithm is unchanged. We

computen ‘base’ observable operatorsBc1 , . . . , Bcn from the P̂3,x,1 matrices estimated

above, and vectors~b1 and~b∞, as before. Given these parameter estimates, filtering for a

τ -length observation sequence〈~x1, . . . , ~xτ 〉 now proceeds in the following way:

For t = 1, . . . , τ :

Compute~σt such that[~σt]i = Pr[~xt | N (~ci, λΣ)], and normalize.

Bσt =
n∑

j=1

[~σt]jBcj

~bt+1 =
Bσt

~bt
~b∞Bσt

~bt

6.3 Experimental Results

We designed several experiments to evaluate the properties of RR-HMMs and the learning

algorithm both on synthetic and on real-world data. The first set of experiments (Section

94

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3
0

0.2

0.4

0.6

0.8

1

1 2 3
0

0.2

0.4

0.6

0.8

1

ei
ge

nv
al

ue
s

A. B. C.RR-HMM 2-step-Obs. HMM 2-step-Obs. RR-HMM
True
10000
100000

True
10000
100000

True
10000
100000

Figure6.3: Learning discrete RR-HMMs. The three figures depict the actual eigenvalues

of three different RR-HMM transition matrices, and the eigenvalues (95% error bars) of

the sum of RR-HMM observable operators estimated with10, 000 and100, 000 training

observations. (A) A 3-state, 3-observation, rank 2 RR-HMM. (B) A full-rank, 3-state,

2-observation HMM. (C) A 4-state, 2-observation, rank 3 RR-HMM.

6.3.1) tests the ability of the spectral learning algorithm to recover the correct RR-HMM.

The second experiment (Section6.3.2)evaluates the representational capacity of the RR-

HMM by learning a model of a video that requires both competitive inhibition and smooth

state evolution. The third set of experiments (Section6.3.3) tests the model’s ability to

learn, filter, predict, and simulate video captured from a robot moving in an indoor office

environment.

6.3.1 Learning Synthetic RR-HMMs

First we evaluate the unbiasedness of the spectral learning algorithm for RR-HMMs on

3 synthetic examples. In each case, we build an RR-HMM, sample observations from

the model, and estimate the model with the spectral learning algorithm described in Sec-

tion 6.2. We compare the eigenvalues ofB =
∑

xBx in the learned model to the eigenval-

ues of the transition matrixT of the true model.B is a similarity transform ofS ·R which

therefore has the same non-zero eigenvalues asT = RS, so we expect the estimated eigen-

values to converge to the true eigenvalues with enough data. This is a necessary condition

95

for unbiasedness but not a sufficient one. See SectionA.3 in Appendix for parameters of

HMMs used in the examples below.

Example 1: An RR-HMM We examine an HMM withm = 3 hidden states,n = 3

observations, a full-rank observation matrix and ak = 2 rank transition matrix. Fig-

ure 6.3(A) plots the true and estimated eigenvalues for increasing size of dataset, along

with error bars, suggesting that we recover the true dynamic model.

Example 2: A 2-step-Observable HMM We examine an HMM withm = 3 hidden

states,n = 2 observations, and a full-rank transition matrix (see Appendix for parame-

ters). This HMM violates them ≤ n condition. The parameters of this HMM cannot be

estimated with the original learning algorithm, since a single observation does not pro-

vide enough information to disambiguate state. By stacking2 consecutive observations

(see Section6.2.4), however, the spectral learning algorithm can be applied successfully

(Figure6.3(B)).

Example 3: A 2-step-Observable RR-HMM We examine an HMM withm = 4 hid-

den states,n = 2 observations, and ak = 3 rank transition matrix (see Appendix for pa-

rameters). In this example, the HMM is low rankand multiple observations are required

to disambiguate state. Again, stacking two consecutive observations in conjunction with

the spectral learning algorithm is enough to recover good RR-HMM parameter estimates

(Figure6.3(C)).

6.3.2 Competitive Inhibition and Smooth State Evolution in Video

We model a clock pendulum video consisting of 55 frames (with a period of∼ 22 frames)

as a 10-state HMM, a 10-dimensional LDS, and a rank10 RR-HMM with 4 stacked obser-

vations. Note that we could easily learn models with more than 10 latent states/dimensions;

we limited the dimensionality in order to demonstrate the relative expressive power of the

different models. For the HMM, we convert the continuous data to discrete observations

96

0
1

x 10
4

−1

0
1

x 10
4

−4000

0

4000

0.1500
0.2

−0.23

−0.2

−0.17

C. RR-HMMB. Stable LDSA. HMM

0.08
0.060.05

0.15
−0.2

−0.1

0

Figure6.4: The clock video texture simulated by a HMM, a stable LDS, and a RR-HMM.

(A) The clock modeled by a10-state HMM. The manifold consists of the top3 principal

components of predicted observations during simulation. The generated frames are coher-

ent but motion in the video is jerky. (B) The clock modeled by a10-dimensional LDS. The

manifold indicates the trajectory of the model in state space during simulation. Motion in

the video is smooth but frames degenerate to superpositions. (C) The clock modeled by a

rank10 RR-HMM. The manifold consists of the trajectory of the model in the low dimen-

sional subspace of the state space during simulation. Both the motion and the frames are

correct.

by 1-NN on 25 kernel centers sampled sequentially from the training data. We trained the

resulting discrete HMM using EM. We learned the LDS directly from the video using sub-

space ID with stability constraints [78]using a Hankel matrix of10 stacked observations.

We trained the RR-HMM by stacking 4 observations, choosing an approximate rank of

10 dimensions, and learning 25 observable operators corresponding to 25 Gaussian kernel

centers. We simulate a series of 500 observations from the model and compare the man-

ifolds underlying the simulated observations and frames from the simulated videos (Fig-

ure6.4). The small number of states in the HMM is not sufficient to capture the smooth

evolution of the clock: the simulated video is characterized by realistic looking frames,

but exhibits jerky irregular motion. For the LDS, although the10-dimensional subspace

captures smooth evolution of the simulated video, the system quickly degenerates and in-

dividual frames of video are modeled poorly (resulting in superpositions of pendulums

97

A. B. Example Images

Environment

Path

The Robot C.

0 10 20 30 40 50 60 70 80 90 100
3. 5

4. 5

5. 5

6. 5

7. 5

8. 5

x 106

Prediction HorizonA
vg

. P
re

di
ct

io
n

Er
ro

r

RR-HMM
LDS
HMM

Mean
Last

Figure6.5: (A) The mobile robotic platform used in experiments. (B) Sample images

from the robot’s camera. The lower figure depicts the hallway environment with a central

obstacle (black) and the path that the robot took through the environment while collecting

data (the red counter-clockwise ellipse) (C) Squared loss prediction error for different

models after filtering over initial part of data. The RR-HMM performs more accurate

predictions consistently for 30 timesteps.

in generated frames). For the RR-HMM, the simulated video benefits from both smooth

state evolutionand competitive inhibition. The manifold in the10-dimensional subspace

is smooth and structured and the video is realistic. The results demonstrate that the RR-

HMM has the benefits of smooth state evolution and compact state space of a LDS and the

benefit of competitive inhibition of a HMM.

6.3.3 Filtering, Prediction, and Simulation with Robot Vision Data

We compare HMMs, LDSs, and RR-HMMs on the problem of modeling video data from a

mobile robot in an indoor environment. A video of2000 frames was collected at6 Hz from

a Point Grey Bumblebee2 stereo camera mounted on a Botrics Obot d100 mobile robot

platform (Figure6.5(A)) circling a stationary obstacle (Figure6.5(B)) and1500 frames

were used as training data for each model. Each frame from the training data was reduced

to 100 dimensions via SVD on single observations. Using this training data, we trained

an RR-HMM (k = 50, n = 1500) using spectral learning with 20 stacked continuous

observations and KDE (Section6.2.6) with1500 centers, a 50-dimensional LDS using

98

SubspaceID with Hankel matrices of20 timesteps, and a 50-state HMM with1500 discrete

observations using EM run until convergence. For each model, we performed filtering for

different extentst1 = 100, 101, . . . , 250, then predicted an image which was a furthert2

points in the future, fort2 = 1, 2 . . . , 100. The squared error of this prediction in pixel

space was recorded, and averaged over all the different filtering extentst1 to obtain means

which are plotted in Figure6.5(C). As baselines, we plot the error obtained by using the

mean of filtered data as a predictor (titled ‘Mean’), and the error obtained by using the last

filtered observation as a predictor (titled ‘Last’).

Both baselines perform worse than any of the more complex algorithms (though as

expected, the ‘Last’ predictor is a good one-step predictor), indicating that this is a non-

trivial prediction problem. The LDS does well initially (due to smoothness), and the HMM

does well in the longer run (due to competitive inhibition), while the RR-HMM performs

as well or better at both time scales since it models both the smooth state evolution and

competitive inhibition in its predictive distribution. In particular, the RR-HMM yields sig-

nificantly lower prediction error consistently for the first 30 timesteps (i.e. five seconds) of

the prediction horizon.

6.4 Related Work

6.4.1 Predictive State Representations

Predictive State Representations (PSRs) [68,77] and Observable Operator Models (OOMs) [69]

model sequence probabilities as a product ofobservable operatormatrices. This idea, as

well as the idea of learning such models using linear algebra techniques, originates in the

literature on multiplicity automata and weighted automata [71,72, 70]. Despite recent

improvements [79,80], practical learning algorithms for PSRs and OOMs have been lack-

ing. RR-HMMs and its spectral learning algorithm are also closely related to methods in

subspace identification[27, 29] in control systems for learning LDS parameters, which

use SVD to determine the relationship between hidden states and observations.

99

As pointed out earlier, the spectral learning algorithm presented here learns PSRs. We

briefly discuss other algorithms for learning PSRs from data. Several learning algorithms

for PSRs have been proposed [81,75,82]. It is easier for PSR learning algorithms to return

consistentparameter estimates because the parameters are based on observable quantities.

[74] develops an SVD-based method for finding a low-dimensional variant of PSRs, called

Transformed PSRs(TPSRs). Instead of tracking the probabilities of a small number of

tests, TPSRs track a small number of linear combinations of a larger number of tests. This

allows more compact representations, as well as dimensionality selection based on exam-

ining the singular values of the decomposed matrix, as in subspace identification methods.

Note that nonlinearity can be encoded into the design of core tests. [83] introduced the

concept ofe-testsin PSRs that are indicator functions of aggregate sets of future outcomes,

e.g. all sequence of observations in the immediate future that end with a particular obser-

vation afterk timesteps. In general, tests in discrete PSRs can be indicator functions of

arbitrary statistics of future events, thus encoding nonlinearities that might be essential for

modeling some dynamical systems. Recently, Exponential Family PSRs (EFPSRs) [79]

were introduced as an attempt to generalize the PLG model to allow general exponential

family distributions over the nextN observations. In the EFPSR, state is represented by

modeling the parameters of a time-varying exponential family distribution over the nextN

timesteps. This allows graphical structure to be encoded in the distribution, by choosing

the parameters accordingly. The justification for choosing an exponential family comes

from maximum entropy modeling. Though inference and parameter learning are difficult

in graphical models of non-trivial structure, approximate inference methods can be uti-

lized to make these problems tractable. Like PLGs, the dynamical component of EFPSRs

is modeled byextendingandconditioningthe distribution over time. However, the method

presented [79] has some drawbacks, e.g. the extend-and-condition method is inconsistent

with respect to marginals over individual timesteps between the extended and un-extended

distributions.

100

6.4.2 Hybrid Models, Mixture Models and other recent approaches

RR-HMMs and their algorithms are also related to otherhybrid models. Note that previous

models of the same name (e.g. [84]) address a completely different problem, i.e. reducing

the rank of the Gaussian observation parameters. Since shortly after the advent of LDSs,

there have been attempts to combine the discrete states of HMMs with the smooth dynam-

ics of LDSs. We perform a brief review of the literature on hybrid models; see [85] for a

more thorough review. [86] formulates a switching LDS variant where both the state and

observation variable noise models are mixture of Gaussians with the mixture switching

variable evolving according to Markovian dynamics, and derives the (intractable) optimal

filtering equations where the number of Gaussians needed to represent the belief increases

exponentially over time. They also propose an approximate filtering algorithm for this

model based on a single Gaussian. [87] proposes learning algorithms for an LDS with

switching observation matrices. [88] reviews models where both the observations and

state variable switch according to a discrete variable with Markov transitions.Hidden Fil-

ter HMMs (HFHMMs) [89] combine discrete and real-valued state variables and outputs

that depend on both. The real-valued state is deterministically dependent on previous ob-

servations in a known manner, and only the discrete variable is hidden. This allows exact

inference in this model to be tractable. [90] formulates theMixture Kalman Filter(MKF)

model along with a filtering algorithm, similar to [86] except that the filtering algorithm is

based on sequential Monte-Carlo sampling.

The commonly usedHMMs with mixture-model observations(e.g., Gaussian mixture)

are a special case of RR-HMMs. Ak-state HMM where each state corresponds to a

Gaussian mixture ofm observation models ofn dimensions each is subsumed by ak-

rank RR-HMM withm distinct continuous observations ofn dimensions each, since the

former is constrained to be non-negative and≤ 1 in various places (thek-dimensional

transition matrix, thek-dimensional belief vector, the matrix which transforms this belief

to observation probabilities) where the latter is not.

Switching State-Space Models(SSSMs) [85] posit the existence of several real-valued

hidden state variables that evolve linearly, with a single Markovian discrete-valued switch-

101

ing variable selecting the state which explains the real-valued observation at every timestep.

Since exact inference and learning are intractable in this model, the authors derive a

structured variational approximation that decouples the state space and switching vari-

able chains, effectively resulting in Kalman smoothing on the state space variables and

HMM forward-backward on the switching variable. In their experiments, the authors find

SSSMs to perform better than regular LDSs on a physiological data modeling task with

multiple distinct underlying dynamical models. HMMs performed comparably well in

terms of log-likelihood, indicating their ability to model nonlinear dynamics though the

resulting model was less interpretable than the best SSSM. More recently, models for

nonlinear time series modeling such as Gaussian Process Dynamical Models have been

proposed [91]. However, the parameter learning algorithm is only locally optimal, and ex-

act inference and simulation are very expensive, requiring MCMC over a long sequence of

frames all at once. This necessitates the use of heuristics for both inference and learning.

Another recent nonlinear dynamic model is [92], which differs greatly from other methods

in that it treats each component of the dynamic model learning problem separately using

supervised learning algorithms, and proves consistency on the aggregate result under cer-

tain strong assumptions.

6.5 Discussion

Much as the Subspace ID algorithm (Chapter3) provides a predictive, local optima-free

method for learning continuous latent-variable models, the spectral learning algorithm

here blurs the line between latent variable models and PSRs. PSRs were developed with

a focus on the problem of an agent planning actions in a partially observable environ-

ment. More generally, there are many scenarios in sequential data modeling where the

underlying dynamical system has inputs. The inference task for a learned model is then to

track the belief state while conditioning on observations and incorporating the inputs. The

input-output HMM (IO-HMM) [17] is a conditional probabilistic model which has these

properties. A natural generalization of this work is to the task of learning RR-HMMs with

inputs, or controlled PSRs. We discuss this further in Chapter7. We recently carried out

102

thisgeneralization to controlled PSRs; details can be found in [73].

The question of proving containment or equivalence of RR-HMMs with respect to

PSRs is of theoretical interest. The observable representation of an RR-HMM is a Trans-

formed PSR (TPSR) [74], so every RR-HMM is a PSR; it remains to be seen whether every

PSR corresponds to some RR-HMM (possibly with an infinite number of discrete hidden

states) as well. The idea that “difficult” PSRs should somehow correspond to RR-HMMs

with very large or infinite state space is intuitively appealing but not straightforward to

prove. Another interesting direction would be to bound the performance of the learning

algorithm when the underlying model is only approximately a reduced-rank HMM, much

as the HKZ algorithm includes bounds when the underlying model is approximately an

HMM [12]. This would be useful since in practice it is more realistic to expect any under-

lying system to not comply with the exact model assumptions.

The positive realization problem, i.e. obtaining stochastic transition and observation

matrices from the RR-HMM observable representation, is also significant, though the ob-

servable representation allows us to carry out all possible HMM operations. HKZ de-

scribes a method based on [93] which, however, is highly erratic in practice. In the RR-

HMM case, we have the additional challenge of firstly computing the minimalm for which

a positive realization exists, and since the algorithm learns PSRs there is no guarantee that

a particular set of learned parameters conforms exactly to any RR-HMM. On the applica-

tions side, it would be interesting to compare RR-HMMs with other dynamical models on

classification tasks, as well as on learning models of difficult video modeling and graph-

ics problems for simulation purposes. More elaborate choices of features may be useful

in such applications, as would be the usage of high-dimensional or infinite-dimensional

features via Reducing Kernel Hilbert Spaces (RKHS).

103

104

Chapter 7

Future Work and Discussion

The area of dynamical system modeling is of great importance to machine learning and

robotics, and the ideas in this thesis lead to many promising avenues of research in these

fields. In this chapter we first describe several possible extensions of models and algo-

rithms we have presented. We next summarize the main contributions of this thesis and

discuss its significance in the context of the larger body of machine learning research.

7.1 Future Work

7.1.1 Scaling STACS for learning very large state-space HMMs

While efficientinferencealgorithms have been proposed for HMMs with up to a thousand

states based on specific properties of the underlying parameter space [48,94], it is more

difficult to learnexact HMMs of such large finite state space size. Research on the infinite

HMM and its variants [22,21] provides sampling-based methods for learning nonpara-

metric HMM models with an effectively infinite number of states, but these algorithms are

inefficient and don’t scale well to high-dimensional sequences. The STACS and V-STACS

algorithms presented in Chapter4 efficiently learn accurate models of HMMs with up to a

hundred states or so. Beyond that, several factors hinder efficient and accurate learning:

105

1. Thecomputational cost of performing split-tests on each HMM state at every model

expansion step.

2. The cost of performing EM or Viterbi Training on the entire HMM in every model

learning step.

3. The increased chance offalse positivesin the candidate testing step.

The upshot is that, if we do manage to learn accurate models of this size, the aforemen-

tioned inference algorithms for large-state-space HMMs would allow us to carry out effi-

cient inference in these learned HMMs under a variety of possible additional assumptions,

some of which are relatively reasonable for large state spaces (e.g. assuming the transition

matrix is additively sparse+ low-rank [48]).

One way to address (1) islazy testingof candidates. If a particular candidate state

changes minimally between model expansion steps in terms of its transition and observa-

tion distributions, it is unlikely that its rank as a split candidate will change much. We

can develop this intuition further to form a criterion for selectively testing only those can-

didates that either were likely candidates in the previous model expansion step or have

changed substantially since then. Another, more exact way of addressing (1) is to take

advantage of the highly decoupled nature of split-tests for each state and run them inpar-

allel, which is an increasingly feasible option in light of the growing availability of parallel

architectures and software for parallelizing conventional machine learning algorithms.

The limitation of performing EM on large state spaces (2) can similarly be addressed

by exploiting recent developments in parallelizing belief propagation (e.g. [95]). Another

possibility is to only update regions of state space that have changed significantly w.r.t.

previous iterations.

During split testing, the null hypothesis states that no split justifies the added com-

plexity (either through BIC score, test-set log-likelihood or other metric). The increased

risk of false positives in split testing (3) arises from the increased number of alternative

hypotheses available, since the likelihood that one of them will randomly beat the null hy-

pothesis increases. We can use techniques frommultiple hypothesis testing[96] to modify

106

the split scores and compensate for this phenomenon. Though this avoids continuing to

split needlessly, it doesn’t necessarily make sure we choose the best candidate at each iter-

ation. A more accurate scoring criterion based on variational Bayes [58] or using test-set

loglikelihood for scoring (if enough data and computational resources are present) would

help address this issue.

7.1.2 Constraint generation for learning stable PSRs

Stability is a desirable characteristic of a wide variety of sequential data models. For exam-

ple, a necessary condition for a PSR to be stable is that the sum of the observable operators

in a PSR or OOM must have at most unit spectral radius.1 Chapter6 describes a spectral

learning algorithm for RR-HMMs that is also shown to be able to learn PSRs/OOMs (Sec-

tion A.5 in the Appendix). The constraint generation algorithm described in Chapter5

can be adapted to solve a quadratic programming problem that constrains the appropriate

spectral radius in order to achieve stability. Since PSRs withactions(i.e.controlled PSRs)

were designed with the goal of enabling efficient and accurateplanning, stability becomes

especially desirable for PSR parameters.

7.1.3 Efficient planning in empirically estimated RR-POMDPs

Because of the difficulties associated with learning POMDPs from data, POMDP planning

is typically carried out using hand-coded POMDPs whose belief evolves in a pre-specified

state space. However, the spectral learning algorithm for RR-HMMs, together with ef-

ficient point-based planning algorithms such as [98,99, 100], can allow us toclose the

loopby learning models, planning in them and using the resultant data to update the learnt

model. This effectively leaves the task of state space formulation up to spectral learning to

decide the optimal subspace for planning. While not as easily interpretablea priori, this

method has the potential of discovering far more compact state spaces for planning prob-

1the sufficient condition, namely that the model only emits positive probabilities, is undecidable [97].

However, setting negatives to a small positive number and renormalizing works in practice.

107

lems based on the specific task and value function involved, especially since RR-POMDPs

are more expressive than POMDPs of the same dimension. The connection of RR-HMMs

to PSRs means that such a generalization would effectively learn models of controlled

PSRs from data. We have recently extended the spectral learning algorithm to this sce-

nario, with positive results; in particular, we are able to close the learning-planning loop

by carrying out planning in a model estimated from data on a simulated high-dimensional

vision-based robot navigation task [73]. Note that this is different from Linear-Quadratic-

Gaussian (LQG) control, which is the task of optimally controlling an LDS that has control

inputs.

7.1.4 Learning RR-HMMs over arbitrary observation features

We discussed how to learn RR-HMMs over single observations as well as stacked vectors

of multiple observations for multiple-step observable systems. The logical generalization

is to enable RR-HMMs over arbitraryindicative and characteristic featuresof past and

future observations. We can show that the same spectral learning algorithm yields unbi-

ased estimates for RR-HMM parameters over such features. Generalization of the sample

complexity bounds should in principle follow using the same sampling bounds and matrix

perturbation bounds as used here, and is an important task for future work.

7.1.5 Hilbert space embeddings of RR-HMMs

An alternative generalization of RR-HMM expressiveness is to infinite-dimensional fea-

ture spaces via kernels. Recent work has shown how to embed conditional distributions

in Hilbert space [101], allowing generalization of conditional distributions to infinite-

dimensional feature spaces for several applications. Since a sequential model is basically

a series of conditional distributions, [101] describes an application of conditional distri-

bution embedding to learning LDS models when the latent state is observed. It should

be possible to formulate a kernelized HMM or RR-HMM in a similar fashion. Further

extending the spectral learning method to learn RR-HMMs in Hilbert space would allow

108

HMMs over much more complex observation spaces.

7.1.6 Sample complexity bounds for spectral learning of PSRs

We saw in Chapter6 that the RR-HMM learning algorithm returns unbiased estimates of

PSRs as well. In fact, even though for finite data samples the model returned may not

correspond to any RR-HMM of finite state space size, it always corresponds to some PSR

if it is stable. What remains to be done is to generalize the sample complexity bounds

to the PSR case as well. Since there are no distinct observation and transition matrices

in PSRs, and the observable operators and belief states are not necessarily stochastic, the

bounds and proofs may differ. However, the same basic perturbation and sampling error

ideas should, in theory, hold.

7.1.7 Spectral learning of exponential family RR-HMMs

Belief Compression[102] exploits the stochasticity of HMM beliefs in order to compress

them more effectively for POMDP planning using exponential family PCA [103]. In a

similar vein, it should be possible to extend RR-HMMs and their learning algorithms to

the exponential family case. Gordon (2002)[104] presents a more efficient and general

algorithm for carrying out exponential family PCA which could be used for such an ex-

tension.

7.2 Why This Thesis Matters

Whether the goal is to perform accurate prediction and sequence classification for statis-

tical data mining, or to model a partially observable dynamic environment for reasoning

under uncertainty, the modeling of dynamical systems is a central task. Due to their the-

oretical properties and their effectiveness in practice, LVMs are the predominant class of

probabilistic models for representing dynamical systems. This thesis has proposed several

109

new algorithms for learning LVMs from data more efficiently and accurately than previous

methods, and has also proposed a novel model that combines desirable properties of exist-

ing models and can be learned with strong performance guarantees. The thesis contributes

a number of novel ideas for addressing fundamental problems in sequential data modeling

techniques. For example, we address the problems ofmodel selection and local minimain

EM-based HMM learning by proposing the first practical top-down HMM model selection

algorithm that discovers new states using properties of the observation distribution as well

as the temporal patterns in the data. We also address the issue ofinstability, proposing a

constraint-generation algorithm that outperforms previous methods in both efficiency and

accuracy. Finally, the RR-HMM is a hybrid model that combines the discrete spaces and

competitive inhibition of HMMs with the smooth state evolution of LDSs. The spectral

learning algorithm we propose for it is qualitatively different from EM-based methods,

and is based on the first known HMM learning algorithm with provable performance guar-

antees. We extended the bounds in a way that makes them significantly tighter for cases

where the actual HMM rank is much lower than its state space size. This model and its

learning algorithm also blurs the line of distinction between LVMs and PSRs even further.

For each of the above three branches of this thesis we demonstrated experimental re-

sults on a wide variety of real-world data sets. We also outlined numerous promising

extensions of all three branches earlier in this chapter. The research presented in this

thesis has the potential to positively impact a variety of fields of application where se-

quential data modeling is important, such as robot sensing and planning, video modeling

in computer vision, activity recognition and user modeling, speech recognition, time se-

ries forecasting in science and science, bioinformatics, and more. Many of the extensions

described above are already being researched and implemented, demonstrating that this

thesis lays the groundwork for several fruitful lines of current and future research in the

field of statistical machine learning as well as in application areas such as robotics.

110

Appendix A

RR-HMM Details

This appendix contains details omitted from Chapter6 including learning algorithm per-

formance proof details, a proof sketch regarding learning with ambiguous observations,

and parameter values for synthetic HMM experiments.

A.1 Proofs

Proofs for theoretical guarantees on the RR-HMM learning algorithm are given below,

after some preliminary conditions and lemmas.

The proof of Theorem2 relies on Lemmas18 and24. We start off with some preliminary

results and build up to proving the main theorem and its lemmas below.

A remark on norms: The notation‖X‖p for matricesX ∈ Rm×n denotes theoperator

normmax
‖Xv‖p

‖v‖p
for vectorv 6= 0. Specifically,‖X‖2 denotesL2 matrix norm(also known

asspectral norm), which corresponds to thelargest singular valueσ1(X). Frobenius norm

is denoted by‖X‖F =
(∑m

i=1

∑n
j=1X

2
ij

)1/2

. The notation‖X‖1 for matrices denotes the

L1 matrix norm which corresponds tomaximum absolute column summaxc

∑m
i=1 |Xic|.

The definition of‖x‖p for vectorsx ∈ Rn is the standard distance measure(
∑n

i=1 x
p
i)

1/p.

111

A.1.1 Preliminaries

The following conditions are assumed by the main theorems and algorithms.

Condition 3 [Modification of HKZ Condition 1]~π > 0 element-wise,T has rankk (i.e.

R andS both have rankk) andO has rank at leastk.

The following two conditions onR can always be satisfied by scaling down entries in

R and scaling upS accordingly. However we want entries inR to be as large as possible

under the two conditions below, so thatσk(U
TOR) is large and1/σk(U

TOR) is small to

make the error bound as tight as possible (Theorem2). Hence we pay for scaling downR

by loosening the error bound we obtain for a given number of training samples.

Condition 4 ‖R‖1 ≤ 1.

Condition 5 For some column1 ≤ c ≤ k ofR, it is the case that‖R[·, c]‖2 ≤
√
k/m.

The above two conditions onR ensure the bounds go through largely unchanged from

HKZ aside from the improvement due to low rankk. The first condition can be satisfied in

a variety of ways without loss of generality, e.g. by choosing the columns ofR to be any

k independent columns ofT , andS to be the coefficients needed to reconstructT from

R. Intuitively, the first condition implies thatR does not overly magnify the magnitude

of vectors it multiplies with. The second one implies a certain degree of uniformity in at

least one of the columns ofR. For example, the uniform distribution in a column ofR

would satisfy the constraint, whereas a column of the identity matrix would not. This does

not imply thatT must have a similarly near-uniform column. We can formR from the

uniform distribution along with some independent columns of T.

The observable representation depends on a matrixU ∈ Rn×k that obeys the following

condition:

Condition 6 [Modification of HKZ Condition 2]UTOR is invertible.

112

This is analogous to the HKZ invertibility condition onUTO, sinceOR is the matrix that

yields observation probabilities from alow-dimensionalstate vector. Hence,U defines a

k-dimensional subspace that preserves thelow-dimensionalstate dynamics regardless of

the number of statesm.

Condition 7 Assume thatS diag(~π)OT has full row rank (i.e.k).

This condition amounts to ensuring that that the rangesS andO, which are both at

least rankk, overlap enough to preserve the dynamics when mapping down to the low-

dimensional state. As in HKZ, the left singular vectors ofP2,1 give us a validU matrix.

Lemma 8 [Modification of HKZ Lemma 2] Assume Conditions3and7. Then,rank(P2,1) =

k. Also, ifU is the matrix of left singular vectors ofP2,1 corresponding to non-zero singu-

lar values, thenrange(U) = range(OR), soU ∈ Rn×k obeys Condition6.

PROOF: From its definition, we can showP2,1 can be written as a low-rank product of

RR-HMM parameters:

[P2,1]i,j = Pr[x2 = i, x1 = j]

=
m∑

a=1

m∑
b=1

Pr[x2 = i, x1 = j, h2 = a, h1 = b] (marginalizing hidden statesh)

=
m∑

a=1

m∑
b=1

Pr[x2 = i|h2 = a] Pr[h2 = a|h1 = b] Pr[x1 = j|h1 = b] Pr[h1 = b]

=
m∑

a=1

m∑
b=1

OiaTab~πb[O
T]bj

⇒ P2,1 = OT diag(~π)OT

= ORS diag(~π)OT (A.1)

Thusrange(P2,1) ⊆ range(OR). This shows thatrank(P2,1) ≤ rank(OR).

113

By Condition7,S diag(~π)OT has full row rank, thusS diag(~π)OT(S diag(~π)OT)+ =

Ik×k. Therefore,

OR = P2,1(S diag(~π)OT)+ (A.2)

which impliesrange(OR) ⊆ range(P2,1), which in turn impliesrank(OR) ≤ rank(P2,1).

Together this proves thatrank(P2,1) = rank(OR), which we can show to bek as

follows: Condition3 implies thatrank (UTOR) = k, and hencerank(OR) ≥ k. Since

OR ∈ Rm×k, rank(OR) ≤ k. Therefore,rank(OR) = k. Hencerank(P2,1) = k.

Sincerange(U) = range(P2,1) by definition of singular vectors, this impliesrange(U) =

range(OR). Therefore,(UTOR) is invertible and henceU obeys Condition6. �

The following lemma shows that the observable representation{~b∞,~b1, B1, . . . , Bn}
is linearly related to the true HMM parameters, and can compute the probability of any

sequence of observations.

Lemma 9 [Modification of HKZ Lemma 3] (Observable HMM Representation). Assume

Condition3 on the RR-HMM and Condition6 on the matrixU ∈ Rn×k. Then, the observ-

able representation of the RR-HMM (Definition 1 of the paper) has the following proper-

ties:

1. ~b1 = (UTOR)πl = (UTO)π,

2. ~bT∞ = 1T
mR(UTOR)−1,

3. For all x = 1, . . . , n : Bx = (UTOR)Wx(U
TOR)−1

4. For any timet: Pr[x1:t] = ~bT∞Bxt:1
~b1

PROOF:

114

1. We can write~P1 asOπ, since

[~P1]i = Pr[x1 = i]

=
m∑

a=1

Pr[x1 = i|h1 = a] Pr[h1 = a]

=
m∑

a=1

Oia~πa

Combined with the fact that~b1 = UT ~P1 by definition, this proves the first claim.

2. Firstly note that~PT
1 = ~1T

mT diag(~π)OT, since

~PT
1 = ~πTOT

= ~1T
m diag(~π)OT

= ~1T
mT diag(~π)OT (since~1T

mT = ~1T
m)

This allows us to write~P1 in the following form:

~PT
1 = ~1T

mT diag(π)OT

= ~1T
mRS diag(π)OT

= ~1T
mR(UTOR)−1(UTOR)S diag(π)OT

= ~1T
mR(UTOR)−1UTP2,1 (by equation (A.1))

By equation (A.1),UTP2,1 = (UTOR)S diag(~π)OT. Since(UTOR) is invertible

by Condition6, andS diag(~π)OT has full row rank by Condition7, we know that

(UTP2,1)
+ exists and

UTP2,1(U
TP2,1)

+ = Ik×k (A.3)

Therefore,

bT∞ = PT
1 (UTP2,1)

+ = 1T
mR(UTOR)−1(UTP2,1)(U

TP2,1)
+ = 1T

mR(UTOR)−1

hence proving the second claim.

115

3. Thethird claim can be proven by first expressingP3,x,1 as a product of RR-HMM

parameters:

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j]

=
m∑

a=1

m∑
b=1

m∑
c=1

Pr[x3 = i, x2 = x, x1 = j, h3 = a, h2 = b, h1 = c]

=
m∑

a=1

m∑
b=1

m∑
c=1

Pr[x3 = i|h3 = a] Pr[h3 = a|h2 = b] Pr[x2 = x|h2 = b]

Pr[h2 = b|h1 = c] Pr[h1 = c] Pr[x1 = j|h1 = c]

=
m∑

a=1

m∑
b=1

m∑
c=1

Oia[Ax]abTbc~πc[O
T]cj

⇒ P3,x,1 = OAxT diag(~π)OT

This can be transformed as follows:

P3,x,1 = OAxRS diag(~π)OT

= OAxR(UTOR)−1(UTOR)S diag(~π)OT

= OAxR(UTOR)−1UT(OT diag(~π)OT)

= OAxR(UTOR)−1UTP2,1 (by equation (A.1))

and then plugging in this expression into the definition ofBx, we obtain the required

result:

Bx = (UTP3,x,1)(U
TP2,1)

+ (by definition)

= (UTO)AxR(UTOR)−1(UTP2,1)(U
TP2,1)

+

= (UTO)AxR(UTOR)−1 (by equation (A.3))

= (UTOR) (S diag(Ox,·)R) (UTOR)−1

= (UTOR)Wx(U
TOR)−1

116

4. Usingthe above three results, the fourth claim follows from equation 1 in Section 2

in the paper:

Pr[x1, . . . , xt]

= ~1T
mRWxt . . .Wx1~πl

= ~1T
mR(UTOR)−1(UTOR)Wxt(U

TOR)−1(UTOR)Wxt−1(U
TOR)−1 . . .

. . . (UTOR)Wx1(U
TOR)−1(UTOR)~πl

= ~bT∞Bxt . . . Bx1
~b1

= ~bT∞Bxt:1
~b1

�

In addition to~b1 above, we define normalized conditional ‘internal states’~bt that help us

compute conditional probabilities. These internal states are not probabilities. In contrast

to HKZ where these internal states arem-dimensional vectors, in our case the internal

states arek-dimensional i.e. they correspond to the rank of the HMM. As shown above in

Lemma9,
~b1 = (UTOR)~πl = (UTO)~π

In addition for anyt ≥ 1, given observationsx1:t−1 with non-zero probability, the internal

state is defined as:

~bt = ~bt(x1:t−1) =
Bxt−1:1

~b1
~bT∞Bxt−1:1

~b1
(A.4)

For t = 1 the formula is still consistent since~bT∞~b1 = ~1T
mR(UTOR)−1(UTOR)~πl =

~1T
mR~πl = ~1T

m~π = 1.

Recall that HMM and RR-HMM parameters can be used to calculate joint probabilities

as follows:

Pr[x1, ..., xt] = ~1T
mAxtAxt−1 · · ·Ax1~π

= ~1T
mRS diag(Oxt,·)RS diag(Oxt−1,·)R · · ·S diag(Ox1,·)~π

= ~1T
mR (S diag(Oxt,·)R)

(
S diag(Oxt−1,·)R

)
· · · (S diag(Ox1,·)R)S~π

= ~1T
mRWxt . . .Wx1~πl (by definition ofWx, ~πl) (A.5)

117

The following Lemma shows that the conditional internal states are linearly related, and

also shows how we can use them to compute conditional probabilities.

Lemma 10 [Modification of HKZ Lemma 4] (Conditional Internal States) Assume the

conditions of Lemma9 hold, i.e. Conditions3 and6 hold. Then, for any timet:

1. (Recursive update) IfPr[x1, . . . , xt] > 0, then

~bt+1 =
Bxt

~bt
~bT∞Bxt

~bt

2. (Relation to hidden states)

~bt = (UTOR)lt(x1:t−1) = (UTO)ht(x1:t−1)

where [~ht(x1:t−1)]i = Pr[ht = i|x1:t−1] is defined as the conditional probability

of the hidden state at timet given observationsx1:t−1, and~lt(x1:t−1) is its low-

dimensional projection such that~ht(x1:t−1) = R~lt(x1:t−1).

3. (Conditional observation probabilities)

Pr[xt|x1:t−1] = ~bT∞Bxt
~bt

PROOF: The first proof is direct, the second follows by induction.

1. Thet = 2 case~b2 =
Bx1

~b1
~bT
∞Bx1

~b1
is true by definition (equationA.4). For t ≥ 3, again

by definition ofbt+1 we have

~bt+1 =
Bxt:1

~b1
~bT∞Bxt:1

~b1

=
BxtBxt−1:1

~b1
~bT
∞Bxt−1:1

~b1
~bT
∞Bxt−1:1

~b1
~bT∞BxtBxt−1:1

~b1

=
Bxt

~bt

~bT∞Bxt

Bxt−1:1
~b1

~bT
∞B

xt−1:1
~b1

(by equation (A.4))

=
Bxt

~bt
~bT∞Bxt

~bt
(by equation (A.4))

118

2,3. Thebase case for claim 2 holds by Lemma9, since~h1 = ~π, ~l1 = R~π and~b1 =

(UTOR)~π. For claim 3, the base case holds since~bT∞Bx1
~b1 = ~1T

mRWx1~πl by

Lemma9, which equalsPr[x1] by equation (A.5). The inductive step is:

~bt+1 =
Bxt

~bt
~bT∞Bxt

~bt
(by claim 1 above)

=
Bxt(U

TOR)~lt
Pr[xt|x1:t−1]

(by inductive hypothesis)

=
(UTOR)Wxt

~lt
Pr[xt|x1:t−1]

(by Lemma9)

=
(UTO)Axt

~ht

Pr[xt|x1:t−1]
(∵ RWxt

~lt = RS diag(Oxt,·)R~lt = Axt
~lt)

Now by definition ofAxt
~ht,

~bt+1 = (UTO)
Pr[ht+1 = ·, xt|x1:t−1]

Pr[xt|x1:t−1]

= (UTO)
Pr[ht+1 = ·|x1:t] Pr[xt|x1:t−1]

Pr[xt|x1:t−1]

= (UTO)~ht+1(x1:t)

= (UTOR)~lt+1(x1:t)

This proves claim 2, using which we can complete the proof for claim 3:

~bT∞Bxt+1
~bt+1 = ~1T

mR(UTOR)−1(UTOR)Wxt(U
TOR)−1~bt+1 (by Lemma9)

= ~1T
mRWxt(U

TOR)−1(UTOR)~lt+1 (by claim 2 above)

= ~1T
mRWxt

~lt+1

= ~1T
mRS diag(Oxt,·)R~lt+1 (by definition ofWxt)

= ~1T
mT diag(Oxt,·)~ht+1

= ~1T
mAxt

~ht+1

119

Again by definition ofAxt
~ht+1,

~bT∞Bxt+1
~bt+1 =

m∑
a=1

m∑
b=1

Pr[xt+1|ht+1 = a] Pr[ht+1 = a|ht = b] Pr[ht = b|x1:t]

=
m∑

a=1

m∑
b=1

Pr[xt+1, ht+1 = a, ht = b|x1:t]

= Pr[xt+1|x1:t]

�

Remark 11 If U is the matrix of left singular vectors ofP2,1 corresponding to non-zero

singular values, thenU is the observable-representation analogue of the observation prob-

ability matrixO in the sense that, given a conditional state~bt, Pr[xt = i|x1:t−1] = [U~bt]i

in the same way asPr[xt = i|x1:t−1] = [O~ht]i for a conditional hidden state~ht.

PROOF: Sincerange(U) = range(OR) (Lemma 2), andUUT is a projection operator to

range(U), we haveUUTOR = OR, soU~bt = U(UTOR)lt = ORlt = Oht. �

A.1.2 Matrix Perturbation Theory

We take a diversion to matrix perturbation theory and state some standard theorems from

Steward and Sun (1990) [105] and Wedin (1972) [106] which we will use, and also prove a

result from these theorems. The following lemma bounds theL2-norm difference between

the pseudoinverse of a matrix and the pseudoinverse of its perturbation.

Lemma 12 (Theorem 3.8 of Stewart and Sun (1990) [105]) LetA ∈ Rm×n, withm ≥ n,

and letÃ = A+ E. Then,∥∥∥Ã+ − A+
∥∥∥

2
≤ 1 +

√
5

2
·max

{∥∥A+
∥∥2

2
,
∥∥∥Ã+

∥∥∥2

2

}
‖E‖2 .

The following lemma bounds the absolute differences between the singular values of a

matrix and its perturbation.

120

Lemma 13 (Theorem 4.11 of Stewart and Sun (1990) [105]).LetA ∈ Rm×n withm ≥ n,

and letÃ = A + E. If the singular values ofA and Ã are (σ1 ≥ . . . ≥ σn) and (σ̃1 ≥
. . . ≥ σ̃n), respectively, then

|σ̃i − σi| ≤ ‖E‖2 i = 1, . . . , n

Before the next lemma we must define the notion ofcanonical anglesbetween two sub-

spaces:

Definition 14 (Adapted from definition 4.35 of Stewart (1998) [107]) LetX and Y be

matrices whose columns comprise orthonormal bases of twop-dimensional subspacesX
andY respectively. Let the singular values ofXTY (whereXT denotes the conjugate

transpose, or Hermitian, of matrixX) be γ1, γ2, . . . , γp. Then thecanonical anglesθi

betweenX andY are defined by

θi = cos−1 γi, i = 1, 2, . . . , p

Thematrix of canonical anglesΘ is defined as

Θ(X ,Y) = diag(θ1, θ2, . . . , θp)

Note that∀i γi ∈ [0, 1] in the above definition, sinceγ1 (assuming it’s the highest singular

value) is no greater thanσ1(X
T)σ1(Y) ≤ 1 · 1 = 1, and hencecos−1 γi is always well-

defined.

For any matrixA, defineA⊥ to be theorthogonal complementof the subspace spanned

by the columns ofA. For example, any subset of left singular vectors of a matrix comprise

the orthogonal complement of the matrix composed of the remaining left singular vectors.

The following lemma gives us a convenient way of calculating the sines of the canonical

angles between two subspaces using orthogonal complements:

Lemma 15 (Theorem 4.37 of Stewart (1998) [107]) LetX and Y be n × p matrices,

with n > p, whose columns comprise orthonormal bases of twop-dimensional subspaces

X and Y respectively. AssumeX⊥, Y⊥ ∈ Rn×n−p such that[X X⊥] and [Y Y⊥] are

121

orthogonal matrices. The singular values ofY T
⊥X are the sines of the canonical angles

betweenX andY.

The following lemma bounds theL2-norm difference between the sine of the canonical

angle matrices of the range of a matrix and its perturbation.

Lemma 16 ([106],Theorem4.4 of Stewart and Sun (1990) [105]). LetA ∈ Rm×n with

m ≥ n, with the singular value decomposition (U1, U2, U3,Σ1,Σ2, V1, V2): UT
1

UT
2

UT
3

A [V1 V2

]
=

 Σ1 0

0 Σ2

0 0

Let Ã = A+ E, with analogous SVD (̃U1, Ũ2, Ũ3, Σ̃1, Σ̃2, Σ̃3, Ṽ1, Ṽ2). LetΦ be the matrix

of canonical angles betweenrange(U1) and range(Ũ1), and Θ be the matrix of canon-

ical angles betweenrange(V1) and range(Ṽ1). If there existsδ > 0, α ≥ 0 such that

minσ(Σ̃1) ≥ α+ δ andmaxσ(Σ2) ≤ α, then

max {‖sin Φ‖2 , ‖sin Θ‖2} ≤
‖E‖2
δ

The above two lemmas can be adapted to prove that Corollary 22 of HKZ holds for the

low-rank case as well, assuming that the perturbation is bounded by a number less thanσk.

The following lemma shows that (1) thekth singular value of a matrix and its perturbation

are close to each other, and (2) that the subspace spanned by the firstk singular vectors of

a matrix is nearly orthogonal to the subspace spanned by the(k + 1)th, . . . ,mth singular

vectors of its perturbation, with the matrix product of their bases being bounded.

Corollary 17 [Modification of HKZ Corollary 22] LetA ∈ Rm×n, with m ≥ n, have

rank k < n, and letU ∈ Rm×k be the matrix ofk left singular vectors corresponding to

the non-zero singular valuesσ1 ≥ . . . ≥ σk ≥ 0 of A. Let Ã = A + E. Let Ũ ∈ Rm×k

be the matrix ofk left singular vectors corresponding to the largestk singular values

σ̃1 ≥ . . . ≥ σ̃k of Ã, and let Ũ⊥ ∈ Rm×(m−k) be the remaining left singular vectors.

Assume‖E‖2 ≤ εσk for someε < 1. Then:

122

1. σ̃k ≥ (1− ε)σk.

2.
∥∥∥ŨT

⊥U
∥∥∥

2
≤ ‖E‖2 /σ̃k.

PROOF:

1. From Lemma13,

|σ̃k − σk| ≤ ‖E‖2
|σ̃k − σk| ≤ εσk

σ̃k − σk ≥ −εσk

σ̃k ≥ (1− ε)σk

which proves the first claim.

2. Recall that by Lemma15, if Φ is a matrix of all canonical angles betweenrange(P2,1)

andrange(P̂2,1), thensin Φ contains all the singular values of̃UT
⊥U along its diago-

nal.

Also recall that theL2 norm of a matrix is its top singular value. Then,

‖sin Φ‖2 = σ1(sin Φ) (by definition)

= max diag(sin Φ) (sincesin Φ is a diagonal matrix)

= σ1(Ũ
T
⊥U) (by Lemma15)

=
∥∥∥ŨT

⊥U
∥∥∥

2
(by definition)

Invoking Lemma16with the parameter valuesδ = σ̃k andα = 0 yields‖sin Φ‖2 ≤
‖E‖2 /σ̃k. Combining this with‖sin Φ‖2 =

∥∥∥(ŨT
⊥U)

∥∥∥
2

proves claim 2.

�

A.1.3 Supporting Lemmas

In this section we develop the main supporting lemmas that help us prove Theorem2

123

Estimation Errors

We defineε1,ε2,1 andε3,x,1 as sampling errors for~P1,P2,1 andP3,x,1 respectively:

ε1 =
∥∥∥P̂1 − ~P1

∥∥∥
F

(A.6a)

ε2,1 =
∥∥∥P̂2,1 − P2,1

∥∥∥
F

(A.6b)

ε3,x,1 =
∥∥∥P̂3,x,1 − P3,x,1

∥∥∥
F

for x = 1, . . . , n (A.6c)

Lemma 18 [Modification of HKZ Lemma 8] If the algorithm independently samplesN

observation triples from the HMM, then with probability at least1− η:

ε1 ≤
√

1

N
ln

3

η
+

√
1

N

ε2,1 ≤
√

1

N
ln

3

η
+

√
1

N

max
x

ε3,x,1 ≤
√

1

N
ln

3

η
+

√
1

N∑
x

ε3,x,1 ≤ min
k

(√
k

N
ln

3

η
+

√
k

N
+ 2ε(k)

)
+

√
1

N
ln

3

η
+

√
1

N

Before proving this lemma, we need some definitions and a preliminary result. First, we

restateMcDiarmid’s Inequality[108]:

Theorem 19 Let Z1, . . . , Zm be independent random variables all taking values in the

setZ. Let ci be some positive real numbers. Further, letf : Zm 7→ R be a function of

Z1, . . . , Zm that satisfies∀i, ∀z1, . . . , zm, z
′
i ∈ Z,

|f(z1, . . . , zi, . . . , zm)− f(z1, . . . , z
′
i, . . . , zm)| ≤ ci.

Then for allε > 0,

Pr[f − E[f] ≥ ε] ≤ exp

(
−2ε2∑m

i=1 c
2
i

)
.

124

Assumez is a discrete random variable that takes on values in1, . . . , d. The goal is to

estimate the vector~q = [Pr(z = j)]dj=1 from N i.i.d. sampleszi (i = 1, . . . , N). Let ej

denote thejth column of thed×d identity matrix. Fori = 1, . . . , N , suppose~qi is a column

of thed× d identity matrix such that~qi(j) = ezi
. In other words, thezth

i component of~qi
is 1 and the rest are0. Then the empirical estimate of~q in terms of~qi is q̂ =

∑N
i=1 ~qi/N .

Each part of Lemma18corresponds to bounding, for some~q, the quantity

‖q̂ − ~q‖22 .

We first state a result based on McDiarmid’s inequality (Theorem19):

Proposition 20 [Modification of HKZ Proposition 19] For allε > 0 and q̂, ~q andN as

defined above:

Pr
(
‖q̂ − ~q‖2 ≥ 1/

√
N + ε

)
≤ e−Nε2

PROOF: Recall q̂ =
∑N

i=1 ~qi/N , and definêp =
∑N

i=1 ~pi/N where~pi = ~qi except for

i = k, andpk is an arbitrary column of the appropriate-sized identity matrix. Then we

have

‖q̂ − ~q‖2 − ‖p̂− ~q‖2 ≤ ‖q̂ − p̂‖2 (by triangle inequality)

=

∥∥∥∥∥(∑
i

~qi)/N − (
∑

i

~pi)/N

∥∥∥∥∥
2

= (1/N) ‖~qk − ~pk‖2 (by definition ofp̂, q̂ andL2-norm)

≤ (1/N)
√

12 + 12

=
√

2/N

This shows that‖q̂ − ~q‖2 is a function of random variables~q1, . . . , ~qN such changing the

kth random variableqk for any1 ≤ k ≤ N (resulting in‖p̂− ~q‖2) changes the value of

the function by at mostck =
√

2/N . Note that~q is not a random variable but rather the

variable we are trying to estimate. In this case, McDiarmid’s inequality (Theorem19)

125

bounds the deviation‖q̂ − ~q‖2 from its expectationE ‖q̂ − ~q‖2 as:

Pr(‖q̂ − ~q‖2 ≥ E ‖q̂ − ~q‖2 + ε) ≤ exp
−2ε2∑N

i=1 c
2
i

= exp
−2ε2

N · 2/N2

= e−Nε2 (A.7)

We can bound the expected value using the following inequality:

E

∥∥∥∥∥
N∑

i=1

~qi −N~q

∥∥∥∥∥
2

= E

∥∥∥∥∥
N∑

i=1

~qi −N~q

∥∥∥∥∥
2

2

1/2

≤

E

∥∥∥∥∥
N∑

i=1

~qi −N~q

∥∥∥∥∥
2

2

1/2

(by concavity of square root, and Jensens inequality)

=

(
N∑

i=1

E ‖~qi − ~q‖22

)1/2

=

(
N∑

i=1

E(~qi − ~q)T(~qi − ~q)

)1/2

Multiplying out and using linearity of expectation and properties of~qi (namely, that~qT
i ~qi =

1, E(~qi) = ~q and~q is constant), we get:

E

∥∥∥∥∥
N∑

i=1

~qi −N~q

∥∥∥∥∥
2

≤

(
N∑

i=1

E(1− 2~qT
i ~q + ‖~q‖22)

)1/2

(since~qT
i ~qi = 1)

=

(
N∑

i=1

E(1)− 2
N∑

i=1

E(~qT
i ~q) +

N∑
i=1

E ‖~q‖22

)1/2

=
(
N − 2N ‖~q‖22 +N ‖~q‖22

)1/2

=

√
N(1− ‖~q‖22)

126

This implies an upper bound on the expected value:

E ‖q̂ − ~q‖22 = (1/N2)E

∥∥∥∥∥
N∑

i=1

~qi −N~q

∥∥∥∥∥
2

2

≤ (1/N2) ·N(1− ‖~q‖22)

⇒ E ‖q̂ − ~q‖2 ≤ (1/
√
N)

√
(1− ‖~q‖22)

≤ (1/
√
N)

Usingthis upper bound in McDiarmids inequality (equation (A.7)), we get a looser version

of the bound that proves the proposition:

Pr(‖q̂ − ~q‖2 ≥ 1/
√
N + ε) ≤ e−Nε2

�

We are now ready to prove Lemma18.

PROOF:[Lemma 18] We will treat P̂1,P̂2,1 and P̂3,x,1 as vectors, and use McDiarmid’s

inequality to bound the error in estimating a distribution over a simplex based on indicator

vector samples, using Proposition20. We know that

Pr
(
‖q̂ − ~q‖2 ≥

√
1/N + ε

)
≤ e−Nε2 .

Now letη = e−Nε2. This implies

ln η = −Nε2

ln(1/η) = Nε2

ε =
√

ln(1/η)/N

Hence,

Pr
(
‖q̂ − ~q‖2 ≥

√
1/N +

√
ln(1/η)/N

)
≤ η

Therefore, with probability at least1− η,

‖q̂ − ~q‖2 ≤ 1/
√
N +

√
ln(1/η)/N (A.8)

127

Now, in place of~q in equation (A.8), we substitute the stochastic vector~P1 to prove the first

claim, the vectorized version of the stochastic matrixP2,1 to prove the second claim, and

the vectorized version of the stochastictensorP3,2,1 ∈ Rn×n×n obtained by stackingP3,x,1

matrices over allx, to prove the third claim. The matriceŝP3,x,1 are stacked accordingly

to obtain the estimated tensorP̂3,2,1. We get the following:

ε1 ≤ 1/
√
N +

√
ln(1/η)/N (hence proving the first claim)

ε2,1 ≤ 1/
√
N +

√
ln(1/η)/N (hence proving the second claim)

max
x

ε3,x,1 ≤
√∑

x

ε3,x,1
2

=

√∑
x

∥∥∥P3,x,1 − P̂3,x,1

∥∥∥2

2

=

√∑
x

∑
i

∑
j

([P3,x,1]i,j − [P̂3,x,1]i,j)2

=

√∥∥∥P3,2,1 − P̂3,2,1

∥∥∥2

2

=
∥∥∥P3,2,1 − P̂3,2,1

∥∥∥
2

≤
√

1/N +
√

ln(1/η)/N (hence proving the third claim)

Note the following useful inequality from the above proof:√∑
x

ε3,x,1
2 ≤

√
1/N +

√
ln(1/η)/N (A.9)

It remains to prove the fourth claim, regarding
∑

x ε3,x,1. First we get a bound that

depends onn as follows:∑
x

ε3,x,1 =
∑

x

|ε3,x,1| (∵ ∀x, ε3,x,1 ≥ 0)

≤
√
n

√∑
x

ε3,x,1
2 (∵ ∀~x ∈ Ra, ‖~x‖1 ≤

√
a ‖~x‖2)

≤
√
n/N +

√
n

N
ln

1

η

128

We aren’t going to use the above bound. Instead, ifn is large andN small, this bound

can be improved by removing direct dependence onn. Let ε(k) be the sum of smallest

n − k probabilities of the second observationx2. Let Sk be the set of thesen − k such

observationsx, for anyk. Therefore,

ε(k) =
∑
x∈Sk

Pr[x2 = x] =
∑
x∈Sk

∑
i,j

[P3,x,1]ij

Now, first note that we can bound
∑

x/∈Sk
ε3,x,1 as follows:∑

x/∈Sk

ε3,x,1 ≤
∑
x/∈Sk

|ε3,x,1|

≤
√
k

√∑
x/∈Sk

ε3,x,1
2 (∵ ∀~x ∈ Ra, ‖~x‖1 ≤

√
a ‖~x‖2)

By combining with equationA.9, we get∑
x/∈Sk

ε3,x,1 ≤
√
k/N +

√
k ln(1/η)/N (A.10)

To bound
∑

x∈Sk
ε3,x,1, we first apply equation (A.8) again. Consider the vector~q of length

kn2 + 1 whose firstkn2 entries comprise the elements ofP3,x,1 for all x /∈ Sk, and whose

last entry is the cumulative sum of elements ofP3,x,1 for all x ∈ Sk. Defineq̂ accordingly

with P̂3,x,1 instead ofP3,x,1. Now equation (A.8) directly gives us with probability at least

1− η:∑
x/∈Sk

∑
i,j

([P̂3,x,1]i,j − [P3,x,1]i,j)
2 +

∣∣∣∣∣∑
x∈Sk

∑
i,j

([P̂3,x,1]ij −
∑
x∈Sk

∑
i,j

[P3,x,1]ij)

∣∣∣∣∣
2
 1

2

≤
√

1/N+
√

ln(1/η)/N

∑
x/∈Sk

∥∥∥P̂3,x,1 − P3,x,1

∥∥∥2

F
+

∣∣∣∣∣∑
x∈Sk

∑
i,j

([P̂3,x,1]ij − [P3,x,1]ij)

∣∣∣∣∣
2

≤
(√

1/N +
√

ln(1/η)/N
)2

Since the first term above is positive, we get∣∣∣∣∣∑
x∈Sk

∑
i,j

([P̂3,x,1]ij − [P3,x,1]ij)

∣∣∣∣∣ ≤√1/N +
√

ln(1/η)/N (A.11)

129

Now, by definition ofSk:,∑
x∈Sk

ε3,x,1 =
∑
x∈Sk

∥∥∥P̂3,x,1 − P3,x,1

∥∥∥
F

≤
∑
x∈Sk

∑
i,j

∣∣∣[P̂3,x,1]ij − [P3,x,1]ij

∣∣∣ (∵ ∀~x, ‖~x‖2 ≤ ‖~x‖1)

=
∑
x∈Sk

∑
i,j

max
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
−
∑
x∈Sk

∑
i,j

min
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
(∵ ∀~x, |~x| = [max(0, ~x)−min(0, ~x)])

≤
∑
x∈Sk

∑
i,j

max
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+
∑
x∈Sk

∑
i,j

[P3,x,1]ij

+
∑
x∈Sk

∑
i,j

min
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+
∑
x∈Sk

∑
i,j

[P3,x,1]ij

=
∑
x∈Sk

∑
i,j

max
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+ ε(k)

+
∑
x∈Sk

∑
i,j

min
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+ ε(k) (by definition ofε(k))

≤

∣∣∣∣∣∑
x∈Sk

∑
i,j

(
[P̂3,x,1]ij − [P3,x,1]ij

)∣∣∣∣∣+ 2ε(k)

Plugging in equation (A.11), we get a bound on
∑

x∈Sk
ε3,x,1:∑

x∈Sk

ε3,x,1 ≤
√

1/N +
√

ln(1/η)/N + 2ε(k)

Combining with equation (A.10) and noting thatk is arbitrary, we get the desired bound:∑
x

ε3,x,1 ≤ min
k

[
√
k ln(1/η)/N +

√
k/N +

√
ln(1/η)/N +

√
1/N + 2ε(k)]

Note that, to get the termln(3/η) instead ofln(1/η) as in the fourth claim, we simply

useη/3 instead ofη. This bound on
∑

x ε3,x,1 will be small if the number of frequently

occurring observations is small, even ifn itself is large. �

The next lemma uses the perturbation bound in Corollary17 to bound the effect of

sampling error on the estimatêU , and on the conditioning of(ÛTOR).

130

Lemma 21 [Modification of HKZ Lemma 9] Supposeε2,1 ≤ ε·σk(P2,1) for someε < 1/2.

Let ε0 = ε22,1/((1 − ε)σk(P2,1))
2. DefineU, Û ∈ Rm×k as the matrices of the firstk left

singular vectors ofP2,1, P̂2,1 respectively. Letθ1, . . . , θk be the canonical angles between

span(U) andspan(Û). Then:

1. ε0 < 1

2. σk(Û
TP̂2,1) ≥ (1− ε)σk(P2,1)

3. σk(Û
TP2,1) ≥

√
1− ε0σk(P2,1)

4. σk(Û
TOR) ≥

√
1− ε0σk(OR)

PROOF: First some additional definitions and notation. DefineÛ⊥ to be the remaining

n − k left singular vectors of̂P2,1 corresponding to the lowern − k singular values, and

correspondinglyU⊥ for P2,1. SupposeUΣV T = P2,1 is the thin SVD ofP2,1. Finally, we

use the notation~νi{A} ∈ Rq to denote theith right singular vectorof a matrixA ∈ Rp×q.

Recall thatσi(A) = ‖A~νi{A}‖2 by definition.

First claim:ε0 < 1 follows from the assumptions:

ε0 =
ε2,1

2

((1− ε)σk(P2,1))2

≤ ε2σk(P2,1)
2

(1− ε)2σk(P2,1)
2

=
ε2

(1− ε)2

< 1 (sinceε < 1/2)

Second claim:By Corollary17,σk(P̂2,1) ≥ (1− ε)σk(P2,1). The second claim follows

from noting thatσk(Û
TP̂2,1) = σk(P̂2,1).

131

Third and fourth claims:First consider thekth singular value of̂UTU . For any vector

x ∈ Rk: ∥∥∥ÛTUx
∥∥∥

2

‖x‖2
≥ min

y

∥∥∥ÛTUy
∥∥∥

2

‖y‖2
= σk(Û

TU) (by definition of smallest singular value)

= cos(θk) (by Definition14)

=
√

1− sin2(θk)

=

√
1− σk(ÛT

⊥U)2 (by Lemma15)

≥
√

1− σ1(ÛT
⊥U)2

=

√
1−

∥∥∥ÛT
⊥U
∥∥∥2

2
(by definition ofL2 matrix norm)

Therefore, ∥∥∥ÛTUx
∥∥∥

2
≥ ‖x‖2

√
1−

∥∥∥ÛT
⊥U
∥∥∥2

2
(A.12)

Note that ∥∥∥ÛT
⊥U
∥∥∥2

2
≤ ε2,1

2/σk(P2,1)
2 (by Corollary17)

≤ ε2,1
2

(1− ε)2σk(P2,1)
2 (since0 ≤ ε < 1/2)

= ε0 (by definition)

Hence, by combining the above with equation (A.12), since0 ≤ ε0 < 1:∥∥∥ÛTUx
∥∥∥

2
≥ ‖x‖2

√
1− ε0 (for all x ∈ Rk) (A.13)

The remaining claims follow by taking different choices ofx in equation (A.13), and by

using the intuition that the smallest singular value of a matrix is the smallest possible

L2 norm of a unit-length vector after the matrix has left-multiplied that vector, and the

132

particularvector for which this holds is the corresponding right singular vector. For claim

3, letx = ΣV T~νk{ÛTP2,1}. Then by equation (A.13):

∥∥∥ÛTUΣV T~νk{ÛTP2,1}
∥∥∥

2
≥
∥∥∥ΣV T~νk{ÛTP2,1}

∥∥∥
2

√
1− ε0

SinceP2,1 = UΣV T, and
∥∥ΣV T~νk{ΣV T}

∥∥
2
≤
∥∥∥ΣV T~νk{ÛTP2,1}

∥∥∥
2

by definition of

~νk{ΣV T}, we have:

∥∥∥ÛTP2,1~νk{ÛTP2,1}
∥∥∥

2
≥
∥∥ΣV T~νk{ΣV T}

∥∥
2

√
1− ε0

σk(Û
TP2,1) ≥ σk(ΣV

T)
√

1− ε0 (by definition ofσk(Û
TP2,1), σk(ΣV

T))

σk(Û
TP2,1) ≥ σk(P2,1)

√
1− ε0 (∵ σk(ΣV

T) = σk(P2,1))

which proves claim 3.

For claim 4, first recall thatOR can be exactly expressed asP2,1(S diag(~π)OT)+

(equation (A.2)). For brevity, letA = (S diag(~π)OT)+, so thatOR = P2,1A. Then, let

x = ΣV TA~νk{ÛTOR} in equation (A.13):

∥∥∥ÛTUΣV TA~νk{ÛTOR}
∥∥∥

2
≥
∥∥∥ΣV TA~νk{ÛTOR}

∥∥∥
2

√
1− ε0

SinceP2,1 = UΣV T, and
∥∥ΣV TA~νk{ΣV TA}

∥∥
2
≤
∥∥∥ΣV TA~νk{ÛTOR}

∥∥∥
2

by defini-

tion of ~νk{ΣV TA}, we get:

∥∥∥ÛTP2,1A~νk{ÛTOR}
∥∥∥

2
≥
∥∥ΣV TA~νk{ΣV TA}

∥∥
2

√
1− ε0∥∥∥ÛTOR~νk{ÛTOR}

∥∥∥
2
≥ σk(ΣV

TA)
√

1− ε0 (by equation (A.2))

By definition ofσk(Û
TOR), σk(ΣV

TA), we see that

133

σk(Û
TOR) ≥ σk(ΣV

TA)
√

1− ε0

σk(Û
TOR) ≥ σk(OR)

√
1− ε0 (∵ σk(ΣV

TA) = σk(P2,1A) = σk(OR))

hence proving claim 4. �

Define the following observable representation usingU = Û , which constitutes atrue

observable representation for the HMM as long as(UTOR) is invertible:

b̃∞ = (P2,1
TÛ)+ ~P1 = (ÛTOR)

−T
RT~1m

B̃x = (ÛTP3,x,1)(Û
TP2,1)

+ = (ÛTOR)Wx(Û
TOR)−1 for x = 1, . . . , n

b̃1 = ÛT ~P1

Define the following error measures of estimated parameters with respect to the true ob-

servable representation. The error vector inδ1 is projected toRm before applying the

vector norm, for convenience in later theorems.

δ∞ =
∥∥∥(ÛTO)T(̂b∞ − b̃∞)

∥∥∥
∞

∆x =
∥∥∥(ÛTOR)−1

(
B̂x − B̃x

)
(ÛTOR)

∥∥∥
1

=
∥∥∥(ÛTOR)−1B̂x(Û

TOR)−Wx

∥∥∥
1

∆ =
∑

x

∆x

δ1 =
∥∥∥R(ÛTOR)−1(̂b1 − b̃1)

∥∥∥
1

=
∥∥∥R(ÛTOR)−1b̂1 − ~π

∥∥∥
1

The next Lemma proves that the estimated parametersb̂∞, B̂x, b̂1 are close to the true

parameters̃b∞, B̃x, b̃1 if the sampling errorsε1, ε2,1, ε3,x,1 are small:

Lemma 22 [Modification of HKZ Lemma 10] Assumeε2,1 < σk(P2,1)/3. Then:

134

δ∞ ≤ 4 ·

(
ε2,1

σk(P2,1)
2 +

ε1
3σk(P2,1)

)

∆x ≤
8√
3
·
√
k

σk(OR)
·

(
Pr[x2 = x] · ε2,1

σk(P2,1)
2 +

Σxε3,x,1

3σk(P2,1)

)

∆ ≤ 8√
3
·
√
k

σk(OR)
·

(
ε2,1

σk(P2,1)
2 +

Σxε3,x,1

3σk(P2,1)

)

δ1 ≤
2√
3
·
√
k

σk(OR)
· ε1

PROOF: Note that the assumption onε2,1 guarantees(ÛTOR) to be invertible by Lemma21,

claim 4.

δ∞ bound: We first see thatδ∞ can be bounded by
∥∥∥b̂∞ − b̃∞∥∥∥

2
:

δ∞ =
∥∥∥(OTU)(̂b∞ − b̃∞)

∥∥∥
∞

≤
∥∥OT

∥∥
∞

∥∥∥U (̂b∞ − b̃∞)
∥∥∥
∞

≤
∥∥∥U (̂b∞ − b̃∞)

∥∥∥
∞

≤
∥∥∥U (̂b∞ − b̃∞)

∥∥∥
2

≤
∥∥∥b̂∞ − b̃∞∥∥∥

2

135

In turn, this leads to the following expression:∥∥∥b̂∞ − b̃∞∥∥∥
2

=
∥∥∥(P̂T

2,1Û)+P̂1 − (P2,1
TÛ)+ ~P1

∥∥∥
2

=
∥∥∥(P̂T

2,1Û)+P̂1 − (P2,1
TÛ)+P̂1 + (P2,1

TÛ)+P̂1 − (P2,1
TÛ)+ ~P1

∥∥∥
2

=
∥∥∥((P̂T

2,1Û)+ − (P2,1
TÛ)+

)
P̂1 + (P2,1

TÛ)+(P̂1 − ~P1)
∥∥∥

2

≤
∥∥∥((P̂T

2,1Û)+ − (P2,1
TÛ)+)P̂1

∥∥∥
2
+
∥∥∥(P2,1

TÛ)+(P̂1 − ~P1)
∥∥∥

2

≤
∥∥∥((P̂T

2,1Û)+ − (P2,1
TÛ)+)

∥∥∥
2

∥∥∥P̂1

∥∥∥
1
+
∥∥∥(P2,1

TÛ)+
∥∥∥

2

∥∥∥(P̂1 − ~P1)
∥∥∥

2

The last step above obtains from the consistency of theL2 matrix norm withL1 vector

norm, and from the definition ofL2 matrix norm (spectral norm) as‖A‖2 = max
‖Ax‖2
‖x‖2

.

Now, recall thatÛ has orthonormal columns, and hence multiplying a matrix withÛ

cannot increase its spectral norm. Hence,∥∥∥P̂T
2,1Û − P2,1

TÛ
∥∥∥

2
=
∥∥∥(P̂T

2,1 − P2,1
T)Û

∥∥∥
2
≤
∥∥∥P̂T

2,1 − P2,1
T
∥∥∥

2
= ε2,1.

So, we can use Lemma12 to bound theL2-distance between pseudoinverses ofP̂T
2,1Û and

P2,1
TÛ usingε2,1 as an upper bound on the difference between the matrices themselves.

Also recall that singular values of the pseudoinverse of a matrix are the reciprocals of the

matrix singular values. Substituting this in the above expression, along with the facts that

σk(P̂
T
2,1Û) = σk(P̂2,1),

∥∥∥P̂1

∥∥∥
1

= 1 and
∥∥∥(P̂1 − ~P1)

∥∥∥
2

= ε1, gives us:

∥∥∥b̂∞ − b̃∞∥∥∥
2
≤ 1 +

√
5

2
· ε2,1

min
(
σk(P̂2,1), σk(P2,1

TÛ)
)2 +

ε1

σk(P2,1
TÛ)

Now, to simplify the last expression further, consider Lemma21 in the above context.

Here, ε2,1 ≤ σk(P2,1)/3 and henceε = 1/3. Thereforeσk(P̂2,1) = σk(Û
TP̂2,1) ≥

(2/3)σk(P2,1) andσk(Û
TP2,1) ≥

√
1− ε0σk(P2,1). Hence

min
(
σk(P̂2,1), σk(P2,1

TÛ)
)2

= σk(P2,1)
2 ·min(2/3,

√
1− ε0)

2

136

Thelatter term is larger since

ε0 =
ε2,1

2

((1− ε)σk(P2,1))2

≤ σk(P2,1)
2/9

4σk(P2,1)
2/9

= 1/4

⇒
√

1− ε0 ≥
√

3/2 > 2/3

Thereforemin
(
σk(P̂2,1), σk(P2,1

TÛ)
)2

≥ σk(P2,1)
2(2/3)2. Plugging this into the expres-

sion above along with the fact thatσk(Û
TP2,1) ≥ (

√
3/2)σk(P2,1), we prove the required

result forδ∞:

δ∞ ≤
1 +
√

5

2
· 9ε2,1

4σk(P2,1)
2 +

2ε1√
3σk(P2,1)

≤ 4 ·

(
ε2,1

σk(P2,1)
2 +

ε1
σk(P2,1)

)

∆x,∆ bounds: . We first bound each term∆x by
√
k
∥∥∥B̂x − B̃x

∥∥∥
2
/σk((Û

TOR)):

∆x =
∥∥∥(ÛTOR)−1

(
B̂x − B̃x

)
(ÛTOR)

∥∥∥
1

≤
∥∥∥(ÛTOR)−1(B̂x − B̃x)Û

T
∥∥∥

1
‖OR‖1 (by norm consistency)

≤
√
k
∥∥∥(ÛTOR)−1(B̂x − B̃x)Û

T
∥∥∥

2
‖OR‖1 (byL1 vs.L2 norm inequality)

≤
√
k
∥∥∥(ÛTOR)−1

∥∥∥
2

∥∥∥B̂x − B̃x

∥∥∥
2

∥∥∥ÛT
∥∥∥

2
‖O‖1 ‖R‖1 (by norm consistency)

≤
√
k
∥∥∥(ÛTOR)−1

∥∥∥
2

∥∥∥B̂x − B̃x

∥∥∥
2

(∥∥∥ÛT
∥∥∥

2
, ‖O‖1 , ‖R‖1 ≤ 1

)
=
√
k
∥∥∥B̂x − B̃x

∥∥∥
2
/σk(Û

TOR) (∵ σmax(Û
TOR)−1 = 1/σmin(Û

TOR))

137

The term
∥∥∥B̂x − B̃x

∥∥∥
2

in the numerator can be bounded by∥∥∥B̂x − B̃x

∥∥∥
2

=
∥∥∥(ÛTP3,x,1)(Û

TP2,1)
+ − (ÛTP̂3,x,1)(Û

TP̂2,1)
+
∥∥∥

2

≤
∥∥∥(ÛTP3,x,1)

(
(ÛTP2,1)

+ − (ÛTP̂2,1)
+
)∥∥∥

2
+
∥∥∥ÛT

(
P3,x,1 − P̂3,x,1

)
(ÛTP2,1)

+
∥∥∥

2

≤ ‖P3,x,1‖2 ·
1 +
√

5

2
· ε2,1

min
(
σk(P̂2,1), σk(ÛTP2,1)

)2 +
ε3,x,1

σk(ÛTP2,1)

≤ Pr[x2 = x] · 1 +
√

5

2
· ε2,1

min
(
σk(P̂2,1), σk(ÛTP2,1)

)2 +
ε3,x,1

σk(ÛTP2,1)

where the second inequality is from Lemma12and the last one uses the fact that

‖P3,x,1‖2 ≤ ‖P3,x,1‖F =

√∑
i,j

[P3,x,1]2i,j ≤
∑
i,j

[P3,x,1]i,j = Pr[x2 = x].

Applying Lemma21 as in theδ∞ bound above, gives us the required result on∆x. Sum-

ming both sides overx results in the required bound on∆.

δ1 bound: For δ1, we invoke Condition4 to use the fact that‖R‖1 ≤ 1. Specifically,

δ1 =
∥∥∥R(ÛTOR)−1ÛT(P̂1 − ~P1)

∥∥∥
1

≤ ‖R‖1
∥∥∥(ÛTOR)−1ÛT(P̂1 − ~P1)

∥∥∥
1

(norm consistency)

≤
√
k ‖R‖1

∥∥∥(ÛTOR)−1ÛT(P̂1 − ~P1)
∥∥∥

2
(‖x‖1 ≤

√
n ‖x‖2 for anyx ∈ Rn)

≤
√
k ‖R‖1

∥∥∥(ÛTOR)−1ÛT
∥∥∥

2

∥∥∥(P̂1 − ~P1)
∥∥∥

2
(norm consistency)

≤
√
k ‖R‖1

∥∥∥(ÛTOR)−1
∥∥∥

2
· ε1 (defn. ofε1, Û

T has orthogonal columns)

=

√
kε1

σk(ÛTOR)
(‖R‖1 ≤ 1, defn. ofL2-norm)

The desired bound onδ1 is obtained by using Lemma21. With ε, ε0 as described in the

above proof forδ∞, we have thatσk(Û
TOR) ≥ (

√
3/2)σk(U

TOR). The required bound

follows by plugging this inequality into the above upper bound forδ1. �

138

A.1.4 Proof of Theorem2

The following Lemmas23 and24 together with Lemmas18,21,22above, constitute the

proof of Theorem2 on joint probability accuracy. We state the results based on appropriate

modifications of HKZ, and provide complete proofs. We also describe how the proofs gen-

eralize to the case of handling continuous observations using Kernel Density Estimation

(KDE). First, define the following as in HKZ

ε(i) = min

{∑
j∈S

Pr[x2 = j] : S ⊆ {1 . . . n}, |S| = n− i

}

and let

n0(ε) = min{i : ε(i) ≤ ε}

The termn0(ε), which occurs in the theorem statement, can be interpreted as the mini-

mum number of discrete observations that accounts for1− ε of total marginal observation

probability mass. Since this can be much lower than (and independent of)n in many ap-

plications, the analysis of HKZ is able to usen0 instead ofn in the sample complexity

bound. This is useful in domains with largen, and our relaxation of HKZ preserves this

advantageous property.

The following lemma quantifies how estimation errors accumulate while computing

the joint probability of a lengtht sequence, due to errors in̂Bx andb̂.

Lemma 23 [Modification of HKZ Lemma 11] AssumêUTOR is invertible. For any time

t: ∑
x1:t

∥∥∥R(UTOR)−1
(
B̂xt:1 b̂1 − B̃xt:1 b̃1

)∥∥∥
1
≤ (1 + ∆)tδ1 + (1 + ∆)t − 1

PROOF: Proof by induction. The base case fort = 0, i.e. that
∥∥∥R(UTOR)−1(̂b1 − b̃1)

∥∥∥
1
≤

δ1 is true by definition ofδ1. For the rest, define unnormalized statesb̂t = b̂t(x1:t−1) =

B̂xt−1:1b̂1 andb̃t = b̃t(x1:t−1) = B̃xt−1:1b̃1. For some particulart > 1, assume the inductive

hypothesis as follows

139

∑
x1:t

∥∥∥R(ÛTOR)−1
(
b̂t − b̃t

)∥∥∥
1
≤ (1 + ∆)tδ1 + (1 + ∆)t − 1

The sum overx1:t in the LHS can be decomposed as:

∑
x1:t

∥∥∥R(ÛTOR)−1
(
b̂t − b̃t

)∥∥∥
1

=
∑

x

∑
x1:t−1

∥∥∥R(UTOR)−1
(
(B̂xt − B̃xt)̃bt + (B̂xt − B̃xt)(̂bt − b̃t) + B̃xt (̂bt − b̃t)

)∥∥∥
1

Using triangle inequality, the above sum is bounded by

∑
xt

∑
x1:t−1

∥∥∥R(ÛTOR)−1
(
B̂xt − B̃xt

)
(ÛTO)

∥∥∥
1

∥∥∥R(ÛTOR)−1b̃t

∥∥∥
1

+
∑
xt

∑
x1:t−1

∥∥∥R(ÛTOR)−1
(
B̂xt − B̃xt

)
(ÛTO)

∥∥∥
1

∥∥∥R(ÛTOR)−1
(
b̂t − b̃t

)∥∥∥
1

+
∑
xt

∑
x1:t−1

∥∥∥R(ÛTOR)−1B̃t(Û
TOR)(ÛTOR)−1

(
b̂t − b̃t

)∥∥∥
1

Each of the above double sums is bounded separately. For the first, we note that
∥∥∥R(ÛTOR)−1b̃t

∥∥∥
1

=

Pr[x1:t−1], which sums to1 overx1:t−1. The remainder of the double sum is bounded by∆,

by definition. For the second double sum, the inner sum over
∥∥∥R(ÛTOR)−1(̂bt − b̃t)

∥∥∥
1

is

bounded using the inductive hypothesis. The outer sum scales this bound by∆, by defini-

tion. Hence the second double sum is bounded by∆((1+∆)t−1δ1+(1+∆)t−1−1). Finally,

we deal with the third double sum as follows. We first replace(ÛTOR)−1B̃t(Û
TOR) by

Wxt, and note thatR ·Wxt = AxtR. SinceAxt is entry-wise nonnegative by definition,

‖Axt~v‖1 ≤ ~1T
mAxt|~v|, where |~v| denotes element-wise absolute value. Also note that

~1T
m

∑
xt
Axt|~v| = ~1T

mT |~v| = ~1T
m|~v| = ‖~v‖1. Using this result with~v = R(ÛTOR)−1(̂bt −

b̃t) in the third double sum above, the inductive hypothesis bounds the double sum by

140

(1+∆)t−1δ1 +(1+∆)t−1−1. Combining these three bounds gives us the required result:∑
x1:t

∥∥∥R(ÛTOR)−1
(
b̂t − b̃t

)∥∥∥
1

≤ ∆ + ∆((1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1) + (1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1

= ∆ + (1 + ∆)((1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1)

= ∆ + (1 + ∆)tδ1 + (1 + ∆)t − 1−∆

= (1 + ∆)tδ1 + (1 + ∆)t − 1

thus completing the induction. �

The following lemma bounds the effect of errors in the normalizerb̂∞.

Lemma 24 [Modification of HKZ Lemma 12] Assumeε2,1 ≤ σk(P2,1)/3. Then for anyt,∑
x1:t

∣∣∣Pr[x1:t]− P̂r[x1:t]
∣∣∣ ≤ (1 + δ∞)(1 + δ1)(1 + ∆)t − 1

PROOF: First note that the upper bound onε2,1 along with Lemma21, ensure thatσk(Û
TOR) >

0 and so(ÛTOR) is invertible. The LHS above can be decomposed into three sums that

are dealt with separately:∑
x1:t

∣∣∣Pr[x1:t]− P̂r[x1:t]
∣∣∣ =

∑
x1:t

∣∣∣̂bT∞B̂xt:1 b̂1 −~bT∞Bxt:1
~b1

∣∣∣
=
∑
x1:t

∣∣∣̂bT∞B̂xt:1 b̂1 − b̃T∞B̃xt:1 b̃1

∣∣∣
≤
∑
x1:t

∣∣∣(̂b∞ − b̃∞)T(ÛTOR)(ÛTOR)−1B̃xt:1 b̃1

∣∣∣
+
∑
x1:t

∣∣∣(̂b∞ − b̃∞)T(ÛTOR)(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∣∣∣

+
∑
x1:t

∣∣∣̃bT∞(ÛTOR)(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∣∣∣

The first sum can be bounded as follows, using Hölders inequality and bounds from

141

Lemma22:∑
x1:t

∣∣∣(̂b∞ − b̃∞)T(ÛTOR)(ÛTOR)−1B̃xt:1 b̃1

∣∣∣ ≤∑
x1:t

∥∥∥(ÛTO)T(̂b∞ − b̃∞)
∥∥∥
∞

∥∥∥R(ÛTOR)−1B̃xt:1 b̃1

∥∥∥
1

≤
∑
x1:t

δ∞ ‖Axt:1~π‖1

=
∑
x1:t

δ∞ Pr[x1:t]

= δ∞

The second sum can be bounded also using Hölders, as well as the bound in Lemma23:∑
x1:t

∣∣∣(̂b∞ − b̃∞)T(ÛTOR)(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∣∣∣

≤
∥∥∥(ÛTO)T(̂b∞ − b̃∞)

∥∥∥
∞

∥∥∥R(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∥∥∥

1

≤ δ∞((1 + ∆)tδ1 + (1 + ∆)t − 1)

The third sum again uses Lemma23:∑
x1:t

∣∣∣̃bT∞(ÛTOR)(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∣∣∣ =

∑
x1:t

∣∣∣~1TR(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)
∣∣∣

≤
∥∥∥R(ÛTOR)−1(B̂xt:1 b̂1 − B̃xt:1 b̃1)

∥∥∥
1

≤ (1 + ∆)tδ1 + (1 + ∆)t − 1

Adding these three sums gives us:∑
x1:t

∣∣∣Pr[x1:t]− P̂r[x1:t]
∣∣∣ ≤ δ∞ + δ∞((1 + ∆)tδ1 + (1 + ∆)t − 1) + (1 + ∆)tδ1 + (1 + ∆)t − 1

≤ δ∞ + (1 + δ∞)((1 + ∆)tδ1 + (1 + ∆)t − 1)

which is the required bound. �

PROOF:(Theorem2). AssumeN andε as in the theorem statement:

142

ε = σk(OR)σk(P2,1)ε/(4t
√
k)

N ≥ C · t
2

ε2
·
(

k

σk(OR)2σk(P2,1)4
+

k · n0(ε)

σk(OR)2σk(P2,1)2

)
· log(1/η)

First note that ∑
x1:t

∣∣∣Pr[x1:t]− P̂r[x1:t]
∣∣∣ ≤ 2

since it is theL1 difference between two stochastic vectors. Therefore, the theorem is

vacuous forε ≥ 2. Hence we can assume

ε < 1

in the proof and let the constantC absorb the factor4 difference due to the1/ε2 term in

the expression forN .

The proof has three steps. We first list these steps then prove them below.

First step: for a suitable constantC, the following sampling error bounds follow from

Lemma18:

ε1 ≤ min
(
.05 · (3/8) · σk(P2,1) · ε, .05 · (

√
3/2) · σk(OR) · (1/

√
k) · ε

)
(A.14a)

ε2,1 ≤ min
(
.05 · (1/8) · σk(P2,1)

2 · (ε/5), .01 · (
√

3/8) · σk(OR) · σk(P2,1)
2 · (1/(t

√
k)) · ε

)
(A.14b)∑

x

ε3,x,1 ≤ 0.39 · (3
√

3/8) · σk(OR) · σk(P2,1) · (1/(t
√
k)) · ε (A.14c)

Secondstep: Lemma22 together with equations (A.14) imply:

δ∞ ≤ .05ε (A.15a)

δ1 ≤ .05ε (A.15b)

∆ ≤ 0.4ε/t (A.15c)

Third step: By Lemma24, equations (A.15) and the inequality

(1 + (a/t))t ≤ 1 + 2a for a ≤ 1/2 (A.16)

143

we get the theorem statement.

Proof of first step: Note that for any value of matrixP2,1, we can upper-boundσk(P2,1)

by 1:

σk(P2,1) ≤ σ1(P2,1)

= max
‖x‖2=1

‖P2,1x‖2

= max
‖x‖2=1

 n∑
j=1

(
n∑

i=1

[P2,1]ijxi

)2
1/2

≤ max
‖x‖2=1

n∑
j=1

∣∣∣∣∣
n∑

i=1

[P2,1]ijxi

∣∣∣∣∣ (by norm inequality)

≤
n∑

j=1

n∑
i=1

|[P2,1]ij| (|xi| ≤ 1 since‖x‖2 = 1)

=
n∑

j=1

n∑
i=1

[P2,1]ij (by non-negativity ofP2,1)

= 1 (by definition)

Similarly, for any column-stochastic observation probability matrixO we can boundσk(OR)

144

by
√
k. First see thatσ1(O) ≤

√
m:

σ1(O) = max
‖x‖2=1

‖Ox‖2

= max
‖x‖2=1

(
m∑

j=1

n∑
i=1

(Oijxi)
2

)1/2

≤ max
‖x‖2=1

(
m∑

j=1

n∑
i=1

O2
ij

)1/2

(‖x‖2 = 1⇒ |xi| ≤ 1)

≤

(
m∑

j=1

(
n∑

i=1

Oij)
2

)1/2

(by triangle inequality)

≤

(
m∑

j=1

12

)1/2

(by definition ofO)

=
√
m

Now the bound onσk(OR) follows from Condition5 i.e.σk(OR) ≤
√
k/m:

σk(OR) = min
‖x‖2=1

‖ORx‖2

≤ ‖O‖2 · min
‖x‖2=1

‖Rx‖2 (by norm consistency)

≤
√
m min

‖x‖2=1

√√√√ m∑
i=1

k∑
j=1

(Rijxj)2 (∵ ‖A‖2 = σ1(A) for any matrixA)

Assume thecth column ofR obeys Condition5 for some1 ≤ c ≤ k. Also assumex = ec,

thecth column of thek × k identity matrix, which obeys the constraint‖x‖2 = 1. Then

every component of the inner sum is zero except whenj = c, and themin expression can

145

only get larger:

σk(OR) ≤
√
m

√√√√ m∑
i=1

R2
ic

=
√
m ‖R[·, c]‖2

≤
√
m
√
k/m

=
√
k

hence proving thatσk(OR) ≤
√
k.

Now we begin the proof with theε1 case. Choose aC that satisfies all previous bounds

and also obeys(
√
C/4) · 0.05 · (3/8) ≥ 1.

ε1 ≤
√

1/N(
√

ln(3/η) + 1) (by Lemma18) (A.17)

≤
√

1/N(2
√

ln(3/η)) (since
√

ln(3/η) ≥
√

ln 3 > 1) (A.18)

Now, plugging in the assumed value ofN :

ε1 ≤
2ε(σk(P2,1)

2σk(OR))

t
√
Ck(1 + n0(ε)σk(P2,1)

2)

√
ln(3/η)

ln(1/η)
(A.19)

Any substitutions that increase the right hand side of the above inequality preserve the

inequality. We now drop the additive1 in the denominator, replace
√

ln(3/η)/ ln(1/η) by

2 since it is at most
√

ln 3, and drop the factorst,
√
n0(ε) from the denominator.

ε1 ≤
4σk(OR)σk(P2,1)

2ε√
Ckσk(P2,1)

(A.20)

≤ 1√
C
· 4 ·

[
σk(OR)/

√
k
]
· [σk(P2,1)] · ε

≤ 1√
C

min
(
4 · σk(P2,1) · ε, 4 · σk(OR) · 1/

√
k · ε

)
(∵ both

[
σk(OR)/

√
k
]

and[σk(P2,1)] are≤ 1)

=
1

C ′ min
(
0.05 · 3/8 · σk(P2,1) · ε, 0.05 ·

√
3/2 · σk(OR) · 1/

√
k · ε

)
(for C ′ =

√
C
4
· 0.05 · 3/8)

= min
(
0.05 · 3/8 · σk(P2,1) · ε, 0.05 ·

√
3/2 · σk(OR) · 1/

√
k · ε

)
(∵ C ′ ≥ 1)

146

Henceproving the required bound forε1.

Next we prove theε2,1 case. Choose aC that satisfies all previous bounds also obeys

(
√
C/4) · 0.01 · (

√
3/8) ≥ 1. Note that, since the bound onε2,1 in Lemma18 is the same

as forε1, we can start with the analogue of equation (A.19):

ε2,1 ≤
2ε(σk(P2,1)

2σk(OR))

t
√
Ck(1 + n0(ε)σk(P2,1)

2)

√
ln(3/η)

ln(1/η)

We now drop the additiven0(ε)σk(P2,1)
2 in the denominator, again replace

√
ln(3/η)/ ln(1/η)

by 2 sinceit is at most
√

ln 3, and drop the multiplicative factort from the denominator.

ε2,1 ≤
1√
C
· 4 · σk(P2,1)

2 · σk(OR) · (1/
√
k) · ε

=
1√
C
· 4 ·

[
σk(P2,1)

2] · [σk(OR)/
√
k
]
· ε

≤ 1√
C

min
(
4 · σk(P2,1)

2 · ε, 4 · σk(OR) · σk(P2,1)
2 · 1/

√
k · ε

)
(∵
[
σk(OR)/

√
k
]
≤ 1)

≤ 1

C ′ min
(
0.05 · 1/8 · σk(P2,1)

2 · ε, 0.01 ·
√

3/8 · σk(OR) · σk(P2,1)
2 · 1/

√
k · ε

)
(for C ′ = (

√
C/4) · 0.01 · (

√
3/8))

≤ min
(
0.05 · 1/8 · σk(P2,1)

2 · ε, 0.01 ·
√

3/8 · σk(OR) · σk(P2,1)
2 · 1/

√
k · ε

)
(sinceC ′ ≥ 1)

henceproving the bound onε2,1.

Finally for
∑

x ε3,x,1, assumeC such that2·0.39·(3
√

3/8)
√

C

16+
√

C
≥ 1 in addition to previous

requirements onC. we first restate the bound from Lemma18:

∑
x

ε3,x,1 ≤ min
j

(√
j/N

(√
ln 3/η + 1

)
+ 2ε(j)

)
+
√

1/N
(√

ln 3/η + 1
)

≤
√
n0(ε)/N

(√
ln 3/η + 1

)
+ 2ε(n0(ε)) +

√
1/N

(√
ln 3/η + 1

)
≤
√

1/N
(√

ln 3/η + 1
)

(n0(ε) + 1) + 2ε (sinceε(n0(ε)) ≤ ε)

147

The first two terms are exactly as before, so we perform the same steps as in equa-

tions (A.17)-(A.20) except we do not dropt
√
n0(ε), to get:

∑
x

ε3,x,1 ≤
4σk(OR)σk(P2,1)

2ε√
Ckn0(ε)σk(P2,1)

(n0(ε) + 1) + 2ε

≤ 4σk(OR)σk(P2,1)ε

t
√
Ckn0(ε)

· (2 · n0(ε)) + 2σk(OR)σk(P2,1)ε/4t
√
k

(since1 + n0(ε) ≤ 2 · n0(ε), and plugging inε)

≤ σk(OR) · σk(P2,1) · t
√
k · ε ·

(
8/
√
C + 1/2

)
≤ 1

C ′0.39 · (3
√

3/8) · σk(OR) · σk(P2,1) · t
√
k · ε (for C ′ = 2·0.39·(3

√
3/8)

√
C

16+
√

C
)

≤ 0.39 · (3
√

3/8) · σk(OR) · σk(P2,1) · t
√
k · ε (sinceC ′ > 1 by assumption)

Hence proving the required bound for
∑

x ε3,x,1.

Proof of second step: Substituting from equation (A.14) intoδ1 in Lemma22:

δ1 ≤
2√
3

√
k

σk(OR)
· ε1

≤ 2√
3

√
k

σk(OR)
min

(
.05 · 3

8
σk(P2,1)ε, .05 ·

√
3

2
σk(OR)

1√
k
ε

)

= .05ε ·min

(√
3

4

√
k

σk(OR)
σk(P2,1), 1

)
≤ .05ε

148

Substitutingfrom equation (A.14) intoδ∞ in Lemma22:

δ∞ ≤ 4

(
ε2,1

σk(P2,1)
2 +

ε1
3σk(P2,1)

)

≤ 4

σk(P2,1)
2 min

(
.05 · (1/8) · σk(P2,1)

2 · (ε/5), .01 · (
√

3/8) · σk(OR) · σk(P2,1)
2 · (1/(t

√
k)) · ε

)
+

4

3σk(P2,1)
min

(
.05 · (3/8) · σk(P2,1) · ε, .05 · (

√
3/2) · σk(OR) · (1/

√
k) · ε

)
≤ min

(
.05ε, .04 · (

√
3/8) · σk(OR) · (1/(t

√
k)) · ε

)
+ min

(
.05 · (1/2) · ε, .05 · (2/

√
3) · σk(OR)

σk(P2,1)
· (1/
√
k) · ε

)
≤ .05ε(.01 + .5)

≤ .05ε

Substituting from equation (A.14) into∆ in Lemma22:

∆ ≤ 8√
3
·
√
k

σk(OR)
·

(
ε2,1

σk(P2,1)
2 +

Σxε3,x,1

3σk(P2,1)

)

≤ 8
√
k√

3σk(OR)
·

(
1

σk(P2,1)
2 min

(
.05 · (1/8) · σk(P2,1)

2 · (ε/5), .01 · (
√

3/8) · σk(OR) · σk(P2,1)
2 · ε

t
√
k

)

+
1

3σk(P2,1)
0.39 · (3

√
3/8) · σk(OR) · σk(P2,1) · (1/(t

√
k)) · ε

)

=

(
min

(
.05 · (ε/5)

√
k√

3σk(OR)
, .01 · ε

t

)
+ 0.39 · ε

t

)
≤ .01 · ε

t
+ 0.39 · ε

t

≤ 0.4ε/t

149

Proof of third step: By Lemma24,∑
x1:t

∣∣∣Pr[x1:t]− P̂r[x1:t]
∣∣∣ ≤ (1 + δ∞)(1 + δ1)(1 + ∆)t − 1

≤ (1 + .05ε)(1 + .05ε)(1 + 0.4ε/t)t − 1 (by equations (A.15))

≤ (1 + .05ε)(1 + .05ε)(1 + 0.8ε)− 1 (by equation (A.16), since0.4ε < 1/2)

= 1 + .05ε+ .05ε+ .052ε+ 0.8ε+ .04ε2 + .04ε2 + (.05)2 · .08ε3 − 1

= .0002ε3 + .0825ε2 + 0.9ε

≤ (.0002 + .0825 + 0.9)ε (sinceε < 1 by assumption)

= 0.9827ε

< ε

This completes the proof of Theorem2. �

A.1.5 Proof of Theorem2 for Continuous Observations

For continuous observations, we use Kernel Density Estimation (KDE) [109] to model

the observation probability density function (PDF). We use a fraction of the training data

points as kernel centers, placing one multivariate Gaussian kernel at each point.1 The

KDE estimator of the observation PDF is a convex combination of these kernels; since

each kernel integrates to 1, this estimator also integrates to1. KDE theory [109] tells

us that as the number of kernel centers and the number of samples go to infinity and the

kernel bandwidth goes to zero (at appropriate rates), the KDE estimator converges to the

observation PDF inL1 norm. The kernel density estimator is completely determined by the

normalized vector of kernel weights; therefore, if we can estimate this vector accurately,

our estimate will converge to the observation PDF as well.

Hence our goal is to predict the correct expected value of this normalized kernel vec-

tor given all past observations (or more precisely, given the appropriate sequence of past

1We use a general elliptical covariance matrix, chosen by SVD: that is, we use a spherical covariance

after projecting onto the singular vectors and scaling by the square roots of the singular values.

150

observations, or the appropriate indicative events/features). In the context of Theorem2,

joint probability estimates fort-length observation sequences are effectively the expecta-

tion of entries in at-dimensional tensor formed by the outer product oft indicator vectors.

When we move to KDE, we instead estimate the expected outer product oft stochastic

vectors, namely, the normalized kernel weights at each time step. As long as the sum

of errors in estimating entries of this table goes to zero for any fixedt as the number of

samples increases, our estimated observation PDFs will have bounded error.

The only differences in the proof are as follows. In Lemma18, we observe~qi to be

stochastic vectors instead of indicator vectors; their expectation is still the true value of the

quantity we are trying to predict.~pi are also stochastic vectors in that proof. In the proof

of Proposition20,pk is an arbitrary stochastic vector. Also,~qT
i ~qi ≤ ‖~qi‖1 = 1 now instead

of being always equal to 1, and the same holds for~pT
i ~pi. Also‖p̂i − ~pi‖2 ≤ ‖p̂i − ~pi‖1 = 1

(by triangle inequality). Besides these things, the above proof goes through as it is.

Note that in the continuous observation case, there are continuously many observable

operatorsWx that can be computed. We compute one base operator for each kernel center,

and use convex combinations of these base operators to compute observable operators as

needed.

A.2 Learning with Ambiguous Observations: Example

When stacking observations, the modified, largerP2,1 ∈ Rn×n still has rank at mostk

since it can be written in the formP2,1 = GTH for some matricesG,HT ∈ Rn×m. For

example, ifn = 2 for an HMM with ambiguous observations, and we believe stacking

2 observations per timestep will yield a sufficiently informative observation, the new ob-

servation space will consist of alln = n2 = 4 possible tuples of single observations and

P2,1 ∈ Rn2×n2
, with each observationi corresponding to a tuple< i1, i2 > of the original

151

observations. Specifically,

P2,1(j, i) = Pr(x4 = j2, x3 = j1, x2 = i2, x1 = i1)

=
∑

a,b,c,d

Pr(x4 = j2, x3 = j1, x2 = i2, x1 = i1, h4 = d, h3 = c, h2 = b, h1 = a)

=
∑

a,b,c,d

Oj2dTdcOj1cTcbOi2bTbaOi1aπa

=
∑
b,c

Oj,cTcb[diag(π)O
T
]b,i whereOj,c =

∑
d

Oj2dTdcOj1c

⇒ P2,1 = OT diag(π)O
T

Similarly, we can show thatP3,x,1 = GTHT for some matricesG,HT ∈ Rn×m. The exact

formulae will differ for different choices of past and future observable statistics.

A.3 Synthetic Example RR-HMM Parameters

Example 1

T =

 0.3894 0.2371 0.3735

0.2371 0.4985 0.2644

0.3735 0.2644 0.3621

 O =

 0.6000 0.2000 0.2000

0.2000 0.6000 0.2000

0.2000 0.2000 0.6000

 (A.21)

Example 2

T =

 0.6736 0.0051 0.1639

0.0330 0.8203 0.2577

0.2935 0.1746 0.5784

 O =

[
1 0 .5

0 1 .5

]

Example 3

T =

0.7829 0.1036 0.0399 0.0736

0.1036 0.4237 0.4262 0.0465

0.0399 0.4262 0.4380 0.0959

0.0736 0.0465 0.0959 0.7840

 O =

[
1 0 1 0

0 1 0 1

]

152

A.4 Consistency Result for Learning with Indicative and

Characteristic Features

Here we proveconsistencyof the RR-HMM learning algorithm when handling arbitrary

continuous features of groups of observations, termedindicative featuresfor the past and

characteristic featuresfor the future. As before, the low-rank transition matrix is denoted

by T = RS. The observation probability model isO, which we think of as a ”matrix”

whose first dimension is continuous (corresponding to observationsxt) and whose second

dimension is number of states, so that ”columns” are probability distributions. The sta-

tistics areW P , W , andW F (for past, present, and future), each of which we think of a

”matrix” whose first dimension is (number of statistics) and whose second is continuous

(corresponding to observations), so that ”rows” are statistics that we collect.Wj means the

jth row of W. The initial distribution over states, as before, isπ (a vector of length number

of states). In this scenario, the quantities~P1, P2,1 andP3,x,1 no longer contain probabilities

but ratherexpected valuesof singletons, pairs and triples offeatures. For the special case

of features that are indicator variables ofevents, we recover the conventional case where
~P1, P2,1, P3,x,1 consist of probabilities, and our performance bounds hold in addition to the

consistency results which we show below for the general features case. In the derivation

below, we considerP3,x,1 to be a three-dimensionaltensorrather than a series of matrices,

for simplicity.

With this notation, we have the following expressions forP2,1 andP3,x,1 (see Deriva-

tions subsection below):

P2,1 = (W POR)(S diag(π)O′W F T
) (A.22)

P3,x,1(:, j, :) = (W POR)(S diag(WjO)R)(S diag(π)O′W F T
) (A.23)

(A.24)

FactoringP2,1 = UV , we know thatU has the same range (column span) asP2,1, so

U = (W POR)A

for some (square, invertible) matrixA in the low-rank space. AssumingW POR has full

153

column rank, and writingU+ for the pseudo-inverse ofU , we get

U+P2,1 = A−1S diag(π)O′W F T
(A.25)

U+P3,x,1(:, j, :) = A−1(S diag(WjO)R)(S diag(π)O′W F T
) (A.26)

AssumingS diag(π)O′W F T has full row rank, we then get

Bj ≡ U+P3,x,1(:, j, :)(U
+P2,1)

+ = A−1(S diag(WjO)R)A

This is the analog of the original result about our learned observable operators:Bj

is a similarity transform away fromS diag(WjO)R. However, these new ”observable

operators” aren’t necessarily what we need for tracking, sinceWjO isn’t necessarily a

probability distribution. It’s possible that we can either come up with conditions under

which the new ”observable operators” are really what we need for tracking, or some slight

modification of the statistics collected that makes them so.

154

Derivations

Derivations forP2,1, P3,x,1 that also show them to be low-rank:

P2,1(i, k) = E(tPi (xt)t
F
k (xt+1))

=

∫ ∫
P(xt, xt+1)t

P
i (xt)t

F
k (xt+1)dxtdxt+1

=

∫ ∫ ∑
ht

∑
ht+1

P(ht)T (ht, ht+1)

O(xt, ht)O(xt+1, ht+1)t
P
i (xt)t

F
k (xt+1)dxtdxt+1

=

∫ ∫ ∑
ht

∑
ht+1

∑
zt

P(ht)R(ht, zt)S(zt, ht+1)

O(xt, ht)O(xt+1, ht+1)t
P
i (xt)t

F
k (xt+1)dxtdxt+1

=
∑
zt

(∫ ∑
ht

P(ht)R(ht, zt)O(xt, ht)t
P
i (xt)dxt

)
∫ ∑

ht+1

S(zt, ht+1)O(xt+1, ht+1)t
F
k (xt+1)dxt+1

155

ForP3,x,1:

P3,x,1(i, j, k) = E(tPi (xt−1)tj(xt)t
F
k (xt+1))

=

∫ ∫ ∫
P(xt−1, xt, xt+1)t

P
i (xt−1)tj(xt)t

F
k (xt+1)dxt−1dxtdxt+1

=

∫ ∫ ∫ ∑
ht−1

∑
ht

∑
ht+1

P(ht−1)T (ht−1, ht)T (ht, ht+1)

O(xt−1, ht−1)O(xt, ht)O(xt+1, ht+1)t
P
i (xt−1)tj(xt)t

F
k (xt+1)dxt−1dxtdxt+1

=

∫ ∫ ∫ ∑
ht−1

∑
ht

∑
ht+1

∑
zt−1

∑
zt

P(ht−1)R(ht−1, zt−1)S(zt−1, ht)R(ht, zt)S(zt, ht+1)

O(xt−1, ht−1)O(xt, ht)O(xt+1, ht+1)t
P
i (xt−1)tj(xt)t

F
k (xt+1)dxt−1dxtdxt+1

=
∑
zt−1

∑
zt

∫ ∑
ht−1

P(ht−1)R(ht−1, zt−1)O(xt−1, ht−1)t
P
i (xt−1)dxt−1

(∫ ∑

ht

S(zt−1, ht)R(ht, zt)O(xt, ht)tj(xt)dxt

)
∫ ∑

ht+1

S(zt, ht+1)O(xt+1, ht+1)t
F
k (xt+1)dxt+1

A.5 Consistency Result for Learning PSRs

In this case, R and S don’t exist in the true model, and there is no matrixO. There are only

observable operators[69] which we will call Mi, a normalization vectorb∞, and from

these we can derive update vectorsbTi = bT∞Mi. Assume for now that the observation

features are single discrete observations, and that there is only a single action. The tests

(characteristic events) are assumed to be indicator functions of the next single observation

so the expected value of the test is the probability of seeing that observation. The histo-

ries (indicative events) similarly corresponds to the single previous observation, i.e. the

PSR/OOM is assumed to be1-step observable (see [73] for a generalization of this proof

to general indicative and characteristic events, multiple control inputs and continuous ob-

156

servations). Assumei, j, k are the indices of observationsxt, xt+1, xt+2 respectively. Letz

denote the hidden state at timet, P (z) denote the belief overz, andz̄ denote
∫
zP (z)dz.

ForP3:

P3(i, j, k) =

∫
P (z)P (xt = i | ht = z)P (xt+1 = j | ht = z)P (xt+2 = k | xt+1 = j, ht = z)

=

∫
P (z)

(
bTi z
)(

bTj
Miz

bTi z

)(
bTk
Mj

Miz
bT
i z

bTj
Miz
bT
i z

)
dz

=

∫
P (z)bTkMjMizdz

= bTkMjMiz̄

Similarly, forP2:

P2(i, j) =

∫
P (z)P (xt = i | ht = z)P (xt+1 = j | ht = z)

=

∫
P (z)bTj Mizdz

= bTj Miz̄

LetB andM be matrices such that:

B =

...

...
...

−− bTj −−
...

...
...

n×k

and M =

 · · · | · · ·
· · · Miz̄ · · ·
· · · | · · ·

k×n

Then, we can write

P2 = BM

P3(:, j, :) = BMjM

FactoringP2 = UV , we know thatU has the same range (column span) asP2, so

U = BA

157

for some (square, invertible) matrixA in the low-rank space. AssumingB has full column

rank, and writingU+ for the pseudo-inverse ofU , we get

U+P2 = A−1M (A.27)

U+P3(:, j, :) = A−1MjM (A.28)

AssumingM has full row rank, we then get

Bj ≡ U+P3(:, j, :)(U
+P2)

+ = A−1MjA

Bj is a similarity transform away fromMj, the OOM observable operator.

158

Bibliography

[1] M. W. Kadous. Temporal classification: Extending the classification paradigm

to multivariate time series.PhD thesis, University of New South Wales, 2002.

(document),4.4.5,4.6

[2] Seth L. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed

stability using constrained optimization. InProc. American Control Conference,

2002.(document),5.1,5.2,5.1,5.4

[3] B. Boots. Learning Stable Linear Dynamical Systems. Data Analysis Project,

Carnegie Mellon University, 2009.(document),3.3.2,5.4.2,5.4

[4] L. R. Rabiner. A tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition.Proc. IEEE, 77(2):257–285, 1989.2, 2.2,4.4,4.5,6, 6.1

[5] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum likelihood approach to con-

tinouous speech recognition. InIEEE Trans Pattern Anal Machine Intell., volume

PAMI-5, pages 179–190, 1983.2

[6] P. Boufounos S. El-Difrawy and D. Ehrlich. Hidden Markov Models for DNA

Sequencing. InProc. of Workshop on Genomic Signal Processing and Statistics

(GENSIPS), October 2002.2

[7] M. Brand, N. Oliver, and A. Pentland. Coupled hidden Markov models for complex

action recognition. InProc. Conf. on Computer Vision and Pattern Recognition

(CVPR), 1997.2, 2.5

159

[8] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden Markov model

structure for information extraction. InAAAI’99 Wkshp Machine Learning for In-

formation Extraction, 1999.2

[9] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, IT-13:260–267,

1967.2.3

[10] ChristopherM. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-

sity Press, 1995.2.4

[11] RichardO. Duda and Peter E. Hart.Pattern Classification and Scene Analysis. John

Wiley & Sons Inc, 1973.2.4

[12] Daniel Hsu, Sham Kakade, and Tong Zhang. A spectral algorithm for learning

hidden markov models. InCOLT, 2009.2.4,6.1,6.2,6.2.1,6.5

[13] Daniel Hsu, Sham Kakade, and Tong Zhang. A spectral algorithm for learning

hidden markov models.http://arxiv.org/abs/0811.4413, 2008.2.4

[14] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data

via the EM algorithm.Journal Royal Statistical Society, Series B, 39:1–38, 1977.

2.4.1

[15] L. Baum. An inequality and associated maximization technique in statistical esti-

mation of probabilistic functions of a Markov process.Inequalities, 3:1–8, 1972.

2.4.1,6.2

[16] ZoubinGhahramani. An introduction to hidden markov models and bayesian net-

works. International Journal of Pattern Recognition and Artificial Intelligence,

15:9–42, 2001.2.5,3.5

[17] Yoshua Bengio and Paolo Frasconi. An Input Output HMM Architecture. InAd-

vances in Neural Information Processing Systems, 1995.2.5,6.5

160

[18] Shai Fine, Yoram Singer, and Naftali Tishby. The Hierarchical Hidden Markov

Model: Analysis and Applications.Machine Learning, 32:41–62, 1998.2.5

[19] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. In David S.

Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors,Proc. Conf. Ad-

vances in Neural Information Processing Systems, NIPS, volume 8, pages 472–478.

MIT Press, 1995.2.5

[20] S.Roweis. Constrained Hidden Markov Models. InAdvances in Neural Information

Processing Systems (NIPS), volume 12. MIT Press, 2000.2.5

[21] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.

Journal of the American Statistical Association, 101(476):1566–1581, 2006.2.5,

7.1.1

[22] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The Infinite Hidden Markov

Model. In Becker S. Dietterich, T.G. and Z. Ghahramani, editors,Advances in

Neural Information Processing Systems (NIPS), volume 14, pages 577–585. MIT

Press, 2002.2.5,7.1.1

[23] Emily B. Fox, Erik Sudderth, Michael I. Jordan, and Alan Willsky. An HDP-HMM

for systems with state persistence. InProc. International Conference on Machine

Learning, July 2008.2.5

[24] R.E. Kalman. A new approach to linear filtering and prediction problems.Transac-

tions of the ASME–Journal of Basic Engineering, 1960.3, 3.2

[25] P. Brockwell and R. A. Davis.Time Series: Theory and Methods. Springer, 1991.

3, 3.5

[26] L. Ljung. System Identification: Theory for the user. Prentice Hall, 2nd edition,

1999.3, 3.2,3.3.2,3.3.2,5.2

[27] P. Van Overschee and B. De Moor.Subspace Identification for Linear Systems:

Theory, Implementation, Applications. Kluwer, 1996.3, 3.2, 3.3.2,3.3.2,3.3.2,

3.3.2,3.3.2,5.2,6.1,6.2,6.2.1,6.2.4,6.4.1

161

[28] ZoubinGhahramani and Geoffrey E. Hinton. Parameter estimation for Linear Dy-

namical Systems. Technical Report CRG-TR-96-2, U. of Toronto, Department of

Comp. Sci., 1996.3, 6

[29] Tohru Katayama.Subspace Methods for System Identification: A Realization Ap-

proach. Springer, 2005.3, 3.2,3.3.2,6.2,6.2.4,6.4.1

[30] H. Rauch. Solutions to the linear smoothing problem. InIEEE Transactions on

Automatic Control, 1963.3.2

[31] Kevin Murphy.Dynamic Bayesian Networks: Representation, Inference and Learn-

ing. PhD thesis, UC Berkeley, 2002.3.2

[32] Roger Horn and Charles R. Johnson.Matrix Analysis. Cambridge University Press,

1985.3.3.1,3.3.2,3.3.2,2, 5.3.2,6.2

[33] AristideHalanay and Vladimir Řasvan.Stability and Stable Oscillations in Discrete

Time Systems. CRC, 2000.3.4

[34] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and fore-

casting using the EM algorithm.Journal of Time Series Analysis, 3(4), 1982.3.5

[35] R. E. Kopp and R. J. Orford. Linear regression applied to system identification

and adaptive control systems.Journal of the American Institute of Aeronautics and

Astronautics, 1:2300–2306, 1963.3.5

[36] H. Cox. On the estimation of state variables and parameters for noisy dynamic

systems.IEEE Transactions on Automatic Control, 9:5–12, 1964.3.5

[37] Cen Li and Gautam Biswas. Temporal pattern generation using hidden markov

model based unsupervised classification. volume 1642, pages 245–256, 1999.4.1,

4.2,4.3,4.3.3

[38] M. Ostendorf and H. Singer. Hmm topology design using maximum likelihood

successive state splitting.Computer Speech and Language, 11:17–41, 1997.4.1,

4.2,4.3

162

[39] Matthew Brand. Structure learning in conditional probability models via an entropic

prior and parameter extinction.Neural Computation, 11(5):1155–1182, 1999.4.1,

4.2

[40] Sajid Siddiqi, Geoffrey J. Gordon, and Andrew Moore. Fast state discovery for

HMM model selection and learning. InProc. AISTATS, 2007.4.1

[41] G. Schwarz. Estimating the dimension of a model.Annals of Statistics, 1978.4.1,

4.3.3

[42] A. Stolcke and S. Omohundro. Best-first Model Merging for Hidden Markov Model

Induction. Technical Report TR-94-003, Intl. Computer Science Institute, 1994.

4.2,4.3,4.3.3,4.6

[43] HermannNey. Acoustic modeling of phoneme units for continuous speech recog-

nition. In Proc.5th Europ. Signal Processing Conference, 1990.4.3,4.3.3

[44] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental,

sparse, and other variants. In M. I. Jordan, editor,Learning in Graphical Models.

Kluwer, 1998.4.3

[45] Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic Model Selec-

tion for Directed Networks with Hidden Variables. Technical Report MSR-TR-96-

07, Microsoft Research, 1999.4.3.3,4.6

[46] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine

learning databases, 1998.4.4.1

[47] Andrew Howard and Nicholas Roy. The robotics data set repository (radish), 2003.

4.4.1

[48] SajidM. Siddiqi and Andrew W. Moore. Fast inference and learning in large-state-

space HMMs. InProc. ICML, 2005.4.4.1,7.1.1,7.1.1

163

[49] Liu Ren, Alton Patrick, Alexei A. Efros, Jessica K. Hodgins, and James M. Rehg.

A data-driven approach to quantifying natural human motion.SIGGRAPH 2005,

24(3):1090–1097, August 2005.4.4.1

[50] T. Starner and A. Pentland. Visual Recognition of American Sign Language Using

Hidden Markov Models. InProc., Intl. Workshop on Automatic Face and Gesture

Recognition (IWAFGR), 1995.4.4.5

[51] Y. Liu, Q. Xiang, Y. Wang, and L. Cai. Cultural style based music classification of

audio signals. InICASSP, 2009.4.5

[52] D. Rybach, C. Gollam, R. Schluter, and H. Ney. Audio segmentation for speech

recognition using segment features. InICASSP, 2009.4.5

[53] J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, and A. Serralheiro. Non-

speech audio event detection. InICASSP, 2009.4.5

[54] S. Ntalampiras, I. Potamitis, and N. Fakotakis. On acoustic surveillance of haz-

ardous situations. InICASSP, 2009.4.5

[55] H. Okuno, T. Ogata, and K. Komatani. Computational auditory scene analysis and

its application to robot audition: Five years experience. InSecond International

Conference on Informatics Research, 2007.4.5

[56] C. Wooters and M. Huijbregts. The ICSI RT07s Speaker Diarization System.

Springer-Verlag, 2008.4.5

[57] Gal Elidan and Nir Friedman. Learning the dimensionality of hidden variables. In

Proc. UAI, 2001.4.6

[58] Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference.

PhD Thesis, Gatsby Computational Neuroscience Unit, University College Lon-

don., 2002.4.6,7.1.1

[59] StephenBoyd and Lieven Vandenberghe.Convex Optimization. Cambridge Uni-

versity Press, 2004.5.1

164

[60] R. Horst and P. M. Pardalos, editors.Handbook of Global Optimization. Kluwer,

1995.5.1

[61] S. Soatto, G. Doretto, and Y. Wu. Dynamic Textures.Intl. Conf. on Computer

Vision, 2001.5.1

[62] E. Keogh and T. Folias. The UCR Time Series Data Mining Archive, 2002.5.1

[63] SethL. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed

stability using constrained optimization.IEEE Transactions on Automatic Control,

48(7):1259–1263, July 2003.5.1,5.2,5.4

[64] N. L. C. Chui and J. M. Maciejowski. Realization of stable models with subspace

methods.Automatica, 32(100):1587–1595, 1996.5.2

[65] T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor. Identification of

stable models in subspace identification by using regularization.IEEE Transactions

on Automatic Control, 49(9):1416–1420, 2001.5.2

[66] Andrew Y. Ng and H. Jin Kim. Stable adaptive control with online learning. In

Proc. NIPS, 2004.5.3.2

[67] M. Wagner. A national retail data monitor for public health surveillance.Morbidity

and Mortality Weekly Report, 53:40–42, 2004.5.4.3

[68] MichaelLittman, Richard Sutton, and Satinder Singh. Predictive representations of

state. InAdvances in Neural Information Processing Systems (NIPS), 2002.6.1,

6.4.1

[69] HerbertJaeger. Observable operator models for discrete stochastic time series.

Neural Computation, 12:1371–1398, 2000.6.1,6.1.2,6.2,6.2.1,6.2.2,6.2.5,6.4.1,

A.5

[70] Vijay Balasubramanian. Equivalence and Reduction of Hidden Markov Models.

MSc. Thesis, MIT, 1993.6.1,6.2,6.4.1

165

[71] M. P. Scḧutzenberger. On the definition of a family of automata.Inf Control, 4:245–

270, 1961.6.1,6.2,6.4.1

[72] M. Fleiss. Matrices deHankel.J. Math. Pures Appl., 53:197–222, 1974.6.1,6.2,

6.4.1

[73] Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon. Clos-

ing the Learning-Planning Loop with Predictive State Representations.

http://arxiv.org/abs/0912.2385, 2009.6.1,6.5,7.1.3,A.5

[74] Matthew Rosencrantz and Geoffrey J. Gordon. Learning low dimensional predictive

representations. InProc. ICML, 2004.6.1.1,6.4.1,6.5

[75] Michael James and Satinder Singh. Learning and discovery predictive state rep-

resentations in dynamical systems with reset. InProc. ICML, 2004. 6.1.2,6.2.2,

6.4.1

[76] Patrick O. Hoyer. Non-negative matrix factorization with sparseness constraints.

Journal of Machine Learning Research, 5:1457–1469, 2004.6.2

[77] SatinderSingh, Michael James, and Matthew Rudary. Predictive state representa-

tions: A new theory for modeling dynamical systems. InProc. UAI, 2004. 6.2,

6.2.1,6.2.5,6.4.1

[78] Sajid Siddiqi, Byron Boots, and Geoffrey J. Gordon. A constraint generation ap-

proach to learning stable linear dynamical systems. InProc. NIPS, 2007.6.3.2

[79] David Wingate and Satinder Singh. Exponential family predictive representations

of state. InProc. NIPS, 2007.6.4.1

[80] Ming-JieZhao and Herbert Jaeger and Michael Thon. A Bound on Modeling Error

in Observable Operator Models and an Associated Learning Algorithm.Neural

Computation.6.4.1

[81] Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter

Stone. Learning predictive state representations. InProc. ICML, 2003.6.4.1

166

[82] Britton Wolfe, Michael James, and Satinder Singh. Learning predictive state repre-

sentations in dynamical systems without reset. InProc. ICML, 2005.6.4.1

[83] Matthew Rudary and Satinder Singh. A nonlinear predictive state representation.

In Proc. NIPS, 2003.6.4.1

[84] NagendraKumar and Andreas G. Andreou. Heteroscedastic discriminant analy-

sis and reduced rank hmms for improved speech recognition.Journal of Speech

Communication, 26:283–297, 1998.6.4.2

[85] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching

state-space models.Neural Computation, 12(4), 2000.6.4.2

[86] G. A. Ackerson and K. S. Fu. On state estimation in switching environments.IEEE

Transactions on Automatic Control, 15(1):10–17, January 1970.6.4.2

[87] R. H. Shumway and D. S. Stoffer. Dynamic linear models with switching.J. Amer.

Stat. Assoc., 86:763–769, 1993.6.4.2

[88] Y. Bar-Shalom and X. R. Li.Estimation and Tracking. Artech House, 1993.6.4.2

[89] A. M. Fraser and A. Dimitriadis. Forecasting probability densities by using hidden

markov models with mixed states, 1993.6.4.2

[90] R. Chen and J. Liu. Mixture kalman filters.Journal of the Royal Statistical Society

B, 62:493–508, 2000.6.4.2

[91] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models.

In Proc. NIPS, 2005.6.4.2

[92] JohnLangford and Ruslan Salakhutdinov and Tong Zhang. Learning Nonlinear

Dynamic Models. InICML, 2009.6.4.2

[93] E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov

models.Annals of Applied Probability, 2:583–614, 2006.6.5

167

[94] P. Felzenszwalb, D. Huttenlocher, and J. Kleinberg. Fast Algorithms for Large State

Space HMMs with Applications to Web Usage Analysis. InAdvances in Neural

Information Processing Systems (NIPS), volume 16, 2003.7.1.1

[95] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Residual splash for optimally

parallelizing belief propagation. InProc. AISTATS, 2009.7.1.1

[96] J.P. Shaffer. Multiple Hypothesis Testing.Annual Review of Psychology, 46:561–

584, 1995.7.1.1

[97] Eric Wiewiora. Modeling Probability Distributions with Predictive State Represen-

tations. PhD. Thesis, University of California at San Diego, 2007.1

[98] J.Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algo-

rithm for POMDPs. InProc. IJCAI, 2003.7.1.3

[99] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based value

iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220,

2005.7.1.3

[100] MasoumehT. Izadi and Doina Precup. Point-based Planning for Predictive State

Representations. InProc. Canadian AI, 2008.7.1.3

[101] L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert space embeddings of con-

ditional distributions. InProceedings of the International Conference on Machine

Learning (ICML), 2009.7.1.5

[102] Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding Approximate

POMDP Solutions Through Belief Compression.JAIR, 23:1–40, 2005.7.1.7

[103] MichaelCollins, Sanjoy Dasgupta, and Robert Schapire. A generalization of prin-

cipal component analysis to the exponential family. InProc. NIPS, 2001.7.1.7

[104] Geoffrey J. Gordon. Generalized2 Linear2 Models. InProc. NIPS, 2002.7.1.7

168

[105] G. W. Stewart and Ji-Guang Sun.Matrix Perturbation Theory. Academic Press,

1990.A.1.2,12,13,16

[106] Per-̊Ake Wedin. Perturbation Bounds in Connection with Singular Value Decom-

position.BIT Numer. Math., 12:99–111, 1972.A.1.2,16

[107] G.W. Stewart.Matrix Algorithms Vol 1: Basic Decompositions. SIAM, 1998.14,

15

[108] Colin McDiarmid. On the method of bounded differences.Surveys in Combina-

torics, pages 148–188, 1989.A.1.3

[109] B. W. Silverman.Density Estimation for Statistics and Data Analysis. Chapman &

Hall, 1986.A.1.5

169

	1 Introduction
	2 Hidden Markov Models
	2.1 Definition
	2.2 Filtering and Smoothing
	2.3 Path Inference
	2.4 Learning Hidden Markov Models
	2.4.1 Expectation Maximization
	2.4.2 Viterbi Training

	2.5 Related Work

	3 Linear Dynamical Systems
	3.1 Definition
	3.2 Inference
	3.2.1 The Forward Pass (Kalman Filter)
	3.2.2 The Backward Pass (RTS Equations)

	3.3 Learning Linear Dynamical Systems
	3.3.1 Expectation Maximization
	3.3.2 Subspace Identification

	3.4 Stability
	3.5 Related Work

	4 Fast State Discovery and Learning in Hidden Markov Models
	4.1 Introduction
	4.2 Related Work
	4.3 Simultaneous Temporal and Contextual Splits
	4.3.1 The Algorithm
	4.3.2 Generating Candidates
	4.3.3 Efficient Candidate Scoring and Selection

	4.4 Experiments
	4.4.1 Algorithms and Data Sets
	4.4.2 Learning HMMs of Predetermined Size
	4.4.3 Model Selection Accuracy with BIC
	4.4.4 Discovering the Correct Topology
	4.4.5 Australian Sign-Language Recognition

	4.5 Application: Event Detection in Unstructured Audio
	4.5.1 Data and Preprocessing
	4.5.2 Results

	4.6 Discussion

	5 Learning Stable Linear Dynamical Systems
	5.1 Introduction
	5.2 Related Work
	5.3 The Algorithm
	5.3.1 Formulating the Objective
	5.3.2 Convexity
	5.3.3 Generating Constraints
	5.3.4 Computing the Solution
	5.3.5 Refinement

	5.4 Experiments
	5.4.1 Stable Dynamic Textures
	5.4.2 Prediction Accuracy on Robot Sensor Data
	5.4.3 Stable Baseline Models for Biosurveillance
	5.4.4 Modeling Sunspot Numbers

	5.5 Discussion

	6 Reduced-Rank Hidden Markov Models
	6.1 Introduction
	6.1.1 Definitions
	6.1.2 Expressivity of RR-HMMs

	6.2 Learning Reduced-Rank HMMs
	6.2.1 The Algorithm
	6.2.2 Inference in the Observable Representation
	6.2.3 Theoretical Guarantees
	6.2.4 Learning with Observation Sequences as Features
	6.2.5 Learning with Indicative and Characteristic Features
	6.2.6 Kernel Density Estimation for Continuous Observations

	6.3 Experimental Results
	6.3.1 Learning Synthetic RR-HMMs
	6.3.2 Competitive Inhibition and Smooth State Evolution in Video
	6.3.3 Filtering, Prediction, and Simulation with Robot Vision Data

	6.4 Related Work
	6.4.1 Predictive State Representations
	6.4.2 Hybrid Models, Mixture Models and other recent approaches

	6.5 Discussion

	7 Future Work and Discussion
	7.1 Future Work
	7.1.1 Scaling STACS for learning very large state-space HMMs
	7.1.2 Constraint generation for learning stable PSRs
	7.1.3 Efficient planning in empirically estimated RR-POMDPs
	7.1.4 Learning RR-HMMs over arbitrary observation features
	7.1.5 Hilbert space embeddings of RR-HMMs
	7.1.6 Sample complexity bounds for spectral learning of PSRs
	7.1.7 Spectral learning of exponential family RR-HMMs

	7.2 Why This Thesis Matters

	A RR-HMM Details
	A.1 Proofs
	A.1.1 Preliminaries
	A.1.2 Matrix Perturbation Theory
	A.1.3 Supporting Lemmas
	A.1.4 Proof of Theorem 2
	A.1.5 Proof of Theorem 2 for Continuous Observations

	A.2 Learning with Ambiguous Observations: Example
	A.3 Synthetic Example RR-HMM Parameters
	A.4 Consistency Result for Learning with Indicative and Characteristic Features
	A.5 Consistency Result for Learning PSRs

	Bibliography

